Jump to content

Table of spherical harmonics

From Wikipedia, the free encyclopedia

This is a table of orthonormalized spherical harmonics that employ the Condon-Shortley phase up to degree l = 10 {\displaystyle \ell =10} . Some of these formulas are expressed in terms of the Cartesian expansion of the spherical harmonics into polynomials in x, y, z, and r. For purposes of this table, it is useful to express the usual spherical to Cartesian transformations that relate these Cartesian components to th {\displaystyle \theta } and ph {\displaystyle \varphi } as

{ cos ( th ) = z / r e +- i ph sin ( th ) = ( x +- i y ) / r {\displaystyle {\begin{cases}\cos(\theta )&=z/r\\e^{\pm i\varphi }\cdot \sin(\theta )&=(x\pm iy)/r\end{cases}}}

Complex spherical harmonics

[edit]

For l = 0, ..., 5, see.[1]

l = 0

[edit]

Y 0 0 ( th , ph ) = 1 2 1 p {\displaystyle Y_{0}^{0}(\theta ,\varphi )={1 \over 2}{\sqrt {1 \over \pi }}}

l = 1

[edit]

Y 1 - 1 ( th , ph ) = 1 2 3 2 p e - i ph sin th = 1 2 3 2 p ( x - i y ) r Y 1 0 ( th , ph ) = 1 2 3 p cos th = 1 2 3 p z r Y 1 1 ( th , ph ) = - 1 2 3 2 p e i ph sin th = - 1 2 3 2 p ( x + i y ) r {\displaystyle {\begin{aligned}Y_{1}^{-1}(\theta ,\varphi )&=&&{1 \over 2}{\sqrt {3 \over 2\pi }}\cdot \mathrm {e} ^{-i\varphi }\cdot \sin \theta &&=&&{1 \over 2}{\sqrt {3 \over 2\pi }}\cdot {(x-iy) \over r}\\Y_{1}^{0}(\theta ,\varphi )&=&&{1 \over 2}{\sqrt {3 \over \pi }}\cdot \cos \theta &&=&&{1 \over 2}{\sqrt {3 \over \pi }}\cdot {z \over r}\\Y_{1}^{1}(\theta ,\varphi )&=&-&{1 \over 2}{\sqrt {3 \over 2\pi }}\cdot \mathrm {e} ^{i\varphi }\cdot \sin \theta &&=&-&{1 \over 2}{\sqrt {3 \over 2\pi }}\cdot {(x+iy) \over r}\end{aligned}}}

l = 2

[edit]

Y 2 - 2 ( th , ph ) = 1 4 15 2 p e - 2 i ph sin 2 th = 1 4 15 2 p ( x - i y ) 2 r 2 Y 2 - 1 ( th , ph ) = 1 2 15 2 p e - i ph sin th cos th = 1 2 15 2 p ( x - i y ) z r 2 Y 2 0 ( th , ph ) = 1 4 5 p ( 3 cos 2 th - 1 ) = 1 4 5 p ( 3 z 2 - r 2 ) r 2 Y 2 1 ( th , ph ) = - 1 2 15 2 p e i ph sin th cos th = - 1 2 15 2 p ( x + i y ) z r 2 Y 2 2 ( th , ph ) = 1 4 15 2 p e 2 i ph sin 2 th = 1 4 15 2 p ( x + i y ) 2 r 2 {\displaystyle {\begin{aligned}Y_{2}^{-2}(\theta ,\varphi )&=&&{1 \over 4}{\sqrt {15 \over 2\pi }}\cdot \mathrm {e} ^{-2i\varphi }\cdot \sin ^{2}\theta \quad &&=&&{1 \over 4}{\sqrt {15 \over 2\pi }}\cdot {(x-iy)^{2} \over r^{2}}&\\Y_{2}^{-1}(\theta ,\varphi )&=&&{1 \over 2}{\sqrt {15 \over 2\pi }}\cdot \mathrm {e} ^{-i\varphi }\cdot \sin \theta \cdot \cos \theta \quad &&=&&{1 \over 2}{\sqrt {15 \over 2\pi }}\cdot {(x-iy)\cdot z \over r^{2}}&\\Y_{2}^{0}(\theta ,\varphi )&=&&{1 \over 4}{\sqrt {5 \over \pi }}\cdot (3\cos ^{2}\theta -1)\quad &&=&&{1 \over 4}{\sqrt {5 \over \pi }}\cdot {(3z^{2}-r^{2}) \over r^{2}}&\\Y_{2}^{1}(\theta ,\varphi )&=&-&{1 \over 2}{\sqrt {15 \over 2\pi }}\cdot \mathrm {e} ^{i\varphi }\cdot \sin \theta \cdot \cos \theta \quad &&=&-&{1 \over 2}{\sqrt {15 \over 2\pi }}\cdot {(x+iy)\cdot z \over r^{2}}&\\Y_{2}^{2}(\theta ,\varphi )&=&&{1 \over 4}{\sqrt {15 \over 2\pi }}\cdot \mathrm {e} ^{2i\varphi }\cdot \sin ^{2}\theta \quad &&=&&{1 \over 4}{\sqrt {15 \over 2\pi }}\cdot {(x+iy)^{2} \over r^{2}}&\end{aligned}}}

l = 3

[edit]

Y 3 - 3 ( th , ph ) = 1 8 35 p e - 3 i ph sin 3 th = 1 8 35 p ( x - i y ) 3 r 3 Y 3 - 2 ( th , ph ) = 1 4 105 2 p e - 2 i ph sin 2 th cos th = 1 4 105 2 p ( x - i y ) 2 z r 3 Y 3 - 1 ( th , ph ) = 1 8 21 p e - i ph sin th ( 5 cos 2 th - 1 ) = 1 8 21 p ( x - i y ) ( 5 z 2 - r 2 ) r 3 Y 3 0 ( th , ph ) = 1 4 7 p ( 5 cos 3 th - 3 cos th ) = 1 4 7 p ( 5 z 3 - 3 z r 2 ) r 3 Y 3 1 ( th , ph ) = - 1 8 21 p e i ph sin th ( 5 cos 2 th - 1 ) = - 1 8 21 p ( x + i y ) ( 5 z 2 - r 2 ) r 3 Y 3 2 ( th , ph ) = 1 4 105 2 p e 2 i ph sin 2 th cos th = 1 4 105 2 p ( x + i y ) 2 z r 3 Y 3 3 ( th , ph ) = - 1 8 35 p e 3 i ph sin 3 th = - 1 8 35 p ( x + i y ) 3 r 3 {\displaystyle {\begin{aligned}Y_{3}^{-3}(\theta ,\varphi )&=&&{1 \over 8}{\sqrt {35 \over \pi }}\cdot \mathrm {e} ^{-3i\varphi }\cdot \sin ^{3}\theta \quad &&=&&{1 \over 8}{\sqrt {35 \over \pi }}\cdot {(x-iy)^{3} \over r^{3}}&\\Y_{3}^{-2}(\theta ,\varphi )&=&&{1 \over 4}{\sqrt {105 \over 2\pi }}\cdot \mathrm {e} ^{-2i\varphi }\cdot \sin ^{2}\theta \cdot \cos \theta \quad &&=&&{1 \over 4}{\sqrt {105 \over 2\pi }}\cdot {(x-iy)^{2}\cdot z \over r^{3}}&\\Y_{3}^{-1}(\theta ,\varphi )&=&&{1 \over 8}{\sqrt {21 \over \pi }}\cdot \mathrm {e} ^{-i\varphi }\cdot \sin \theta \cdot (5\cos ^{2}\theta -1)\quad &&=&&{1 \over 8}{\sqrt {21 \over \pi }}\cdot {(x-iy)\cdot (5z^{2}-r^{2}) \over r^{3}}&\\Y_{3}^{0}(\theta ,\varphi )&=&&{1 \over 4}{\sqrt {7 \over \pi }}\cdot (5\cos ^{3}\theta -3\cos \theta )\quad &&=&&{1 \over 4}{\sqrt {7 \over \pi }}\cdot {(5z^{3}-3zr^{2}) \over r^{3}}&\\Y_{3}^{1}(\theta ,\varphi )&=&-&{1 \over 8}{\sqrt {21 \over \pi }}\cdot \mathrm {e} ^{i\varphi }\cdot \sin \theta \cdot (5\cos ^{2}\theta -1)\quad &&=&&{-1 \over 8}{\sqrt {21 \over \pi }}\cdot {(x+iy)\cdot (5z^{2}-r^{2}) \over r^{3}}&\\Y_{3}^{2}(\theta ,\varphi )&=&&{1 \over 4}{\sqrt {105 \over 2\pi }}\cdot \mathrm {e} ^{2i\varphi }\cdot \sin ^{2}\theta \cdot \cos \theta \quad &&=&&{1 \over 4}{\sqrt {105 \over 2\pi }}\cdot {(x+iy)^{2}\cdot z \over r^{3}}&\\Y_{3}^{3}(\theta ,\varphi )&=&-&{1 \over 8}{\sqrt {35 \over \pi }}\cdot \mathrm {e} ^{3i\varphi }\cdot \sin ^{3}\theta \quad &&=&&{-1 \over 8}{\sqrt {35 \over \pi }}\cdot {(x+iy)^{3} \over r^{3}}&\end{aligned}}}

l = 4

[edit]

Y 4 - 4 ( th , ph ) = 3 16 35 2 p e - 4 i ph sin 4 th = 3 16 35 2 p ( x - i y ) 4 r 4 Y 4 - 3 ( th , ph ) = 3 8 35 p e - 3 i ph sin 3 th cos th = 3 8 35 p ( x - i y ) 3 z r 4 Y 4 - 2 ( th , ph ) = 3 8 5 2 p e - 2 i ph sin 2 th ( 7 cos 2 th - 1 ) = 3 8 5 2 p ( x - i y ) 2 ( 7 z 2 - r 2 ) r 4 Y 4 - 1 ( th , ph ) = 3 8 5 p e - i ph sin th ( 7 cos 3 th - 3 cos th ) = 3 8 5 p ( x - i y ) ( 7 z 3 - 3 z r 2 ) r 4 Y 4 0 ( th , ph ) = 3 16 1 p ( 35 cos 4 th - 30 cos 2 th + 3 ) = 3 16 1 p ( 35 z 4 - 30 z 2 r 2 + 3 r 4 ) r 4 Y 4 1 ( th , ph ) = - 3 8 5 p e i ph sin th ( 7 cos 3 th - 3 cos th ) = - 3 8 5 p ( x + i y ) ( 7 z 3 - 3 z r 2 ) r 4 Y 4 2 ( th , ph ) = 3 8 5 2 p e 2 i ph sin 2 th ( 7 cos 2 th - 1 ) = 3 8 5 2 p ( x + i y ) 2 ( 7 z 2 - r 2 ) r 4 Y 4 3 ( th , ph ) = - 3 8 35 p e 3 i ph sin 3 th cos th = - 3 8 35 p ( x + i y ) 3 z r 4 Y 4 4 ( th , ph ) = 3 16 35 2 p e 4 i ph sin 4 th = 3 16 35 2 p ( x + i y ) 4 r 4 {\displaystyle {\begin{aligned}Y_{4}^{-4}(\theta ,\varphi )&=&&{3 \over 16}{\sqrt {35 \over 2\pi }}\cdot \mathrm {e} ^{-4i\varphi }\cdot \sin ^{4}\theta &&=&&{\frac {3}{16}}{\sqrt {\frac {35}{2\pi }}}\cdot {\frac {(x-iy)^{4}}{r^{4}}}\\Y_{4}^{-3}(\theta ,\varphi )&=&&{3 \over 8}{\sqrt {35 \over \pi }}\cdot \mathrm {e} ^{-3i\varphi }\cdot \sin ^{3}\theta \cdot \cos \theta &&=&&{\frac {3}{8}}{\sqrt {\frac {35}{\pi }}}\cdot {\frac {(x-iy)^{3}z}{r^{4}}}\\Y_{4}^{-2}(\theta ,\varphi )&=&&{3 \over 8}{\sqrt {5 \over 2\pi }}\cdot \mathrm {e} ^{-2i\varphi }\cdot \sin ^{2}\theta \cdot (7\cos ^{2}\theta -1)&&=&&{\frac {3}{8}}{\sqrt {\frac {5}{2\pi }}}\cdot {\frac {(x-iy)^{2}\cdot (7z^{2}-r^{2})}{r^{4}}}\\Y_{4}^{-1}(\theta ,\varphi )&=&&{3 \over 8}{\sqrt {5 \over \pi }}\cdot \mathrm {e} ^{-i\varphi }\cdot \sin \theta \cdot (7\cos ^{3}\theta -3\cos \theta )&&=&&{\frac {3}{8}}{\sqrt {\frac {5}{\pi }}}\cdot {\frac {(x-iy)\cdot (7z^{3}-3zr^{2})}{r^{4}}}\\Y_{4}^{0}(\theta ,\varphi )&=&&{3 \over 16}{\sqrt {1 \over \pi }}\cdot (35\cos ^{4}\theta -30\cos ^{2}\theta +3)&&=&&{\frac {3}{16}}{\sqrt {\frac {1}{\pi }}}\cdot {\frac {(35z^{4}-30z^{2}r^{2}+3r^{4})}{r^{4}}}\\Y_{4}^{1}(\theta ,\varphi )&=&&{-3 \over 8}{\sqrt {5 \over \pi }}\cdot \mathrm {e} ^{i\varphi }\cdot \sin \theta \cdot (7\cos ^{3}\theta -3\cos \theta )&&=&&{\frac {-3}{8}}{\sqrt {\frac {5}{\pi }}}\cdot {\frac {(x+iy)\cdot (7z^{3}-3zr^{2})}{r^{4}}}\\Y_{4}^{2}(\theta ,\varphi )&=&&{3 \over 8}{\sqrt {5 \over 2\pi }}\cdot \mathrm {e} ^{2i\varphi }\cdot \sin ^{2}\theta \cdot (7\cos ^{2}\theta -1)&&=&&{\frac {3}{8}}{\sqrt {\frac {5}{2\pi }}}\cdot {\frac {(x+iy)^{2}\cdot (7z^{2}-r^{2})}{r^{4}}}\\Y_{4}^{3}(\theta ,\varphi )&=&&{-3 \over 8}{\sqrt {35 \over \pi }}\cdot \mathrm {e} ^{3i\varphi }\cdot \sin ^{3}\theta \cdot \cos \theta &&=&&{\frac {-3}{8}}{\sqrt {\frac {35}{\pi }}}\cdot {\frac {(x+iy)^{3}z}{r^{4}}}\\Y_{4}^{4}(\theta ,\varphi )&=&&{3 \over 16}{\sqrt {35 \over 2\pi }}\cdot \mathrm {e} ^{4i\varphi }\cdot \sin ^{4}\theta &&=&&{\frac {3}{16}}{\sqrt {\frac {35}{2\pi }}}\cdot {\frac {(x+iy)^{4}}{r^{4}}}\end{aligned}}}

l = 5

[edit]

Y 5 - 5 ( th , ph ) = 3 32 77 p e - 5 i ph sin 5 th Y 5 - 4 ( th , ph ) = 3 16 385 2 p e - 4 i ph sin 4 th cos th Y 5 - 3 ( th , ph ) = 1 32 385 p e - 3 i ph sin 3 th ( 9 cos 2 th - 1 ) Y 5 - 2 ( th , ph ) = 1 8 1155 2 p e - 2 i ph sin 2 th ( 3 cos 3 th - cos th ) Y 5 - 1 ( th , ph ) = 1 16 165 2 p e - i ph sin th ( 21 cos 4 th - 14 cos 2 th + 1 ) Y 5 0 ( th , ph ) = 1 16 11 p ( 63 cos 5 th - 70 cos 3 th + 15 cos th ) Y 5 1 ( th , ph ) = - 1 16 165 2 p e i ph sin th ( 21 cos 4 th - 14 cos 2 th + 1 ) Y 5 2 ( th , ph ) = 1 8 1155 2 p e 2 i ph sin 2 th ( 3 cos 3 th - cos th ) Y 5 3 ( th , ph ) = - 1 32 385 p e 3 i ph sin 3 th ( 9 cos 2 th - 1 ) Y 5 4 ( th , ph ) = 3 16 385 2 p e 4 i ph sin 4 th cos th Y 5 5 ( th , ph ) = - 3 32 77 p e 5 i ph sin 5 th {\displaystyle {\begin{aligned}Y_{5}^{-5}(\theta ,\varphi )&={3 \over 32}{\sqrt {77 \over \pi }}\cdot \mathrm {e} ^{-5i\varphi }\cdot \sin ^{5}\theta \\Y_{5}^{-4}(\theta ,\varphi )&={3 \over 16}{\sqrt {385 \over 2\pi }}\cdot \mathrm {e} ^{-4i\varphi }\cdot \sin ^{4}\theta \cdot \cos \theta \\Y_{5}^{-3}(\theta ,\varphi )&={1 \over 32}{\sqrt {385 \over \pi }}\cdot \mathrm {e} ^{-3i\varphi }\cdot \sin ^{3}\theta \cdot (9\cos ^{2}\theta -1)\\Y_{5}^{-2}(\theta ,\varphi )&={1 \over 8}{\sqrt {1155 \over 2\pi }}\cdot \mathrm {e} ^{-2i\varphi }\cdot \sin ^{2}\theta \cdot (3\cos ^{3}\theta -\cos \theta )\\Y_{5}^{-1}(\theta ,\varphi )&={1 \over 16}{\sqrt {165 \over 2\pi }}\cdot \mathrm {e} ^{-i\varphi }\cdot \sin \theta \cdot (21\cos ^{4}\theta -14\cos ^{2}\theta +1)\\Y_{5}^{0}(\theta ,\varphi )&={1 \over 16}{\sqrt {11 \over \pi }}\cdot (63\cos ^{5}\theta -70\cos ^{3}\theta +15\cos \theta )\\Y_{5}^{1}(\theta ,\varphi )&={-1 \over 16}{\sqrt {165 \over 2\pi }}\cdot \mathrm {e} ^{i\varphi }\cdot \sin \theta \cdot (21\cos ^{4}\theta -14\cos ^{2}\theta +1)\\Y_{5}^{2}(\theta ,\varphi )&={1 \over 8}{\sqrt {1155 \over 2\pi }}\cdot \mathrm {e} ^{2i\varphi }\cdot \sin ^{2}\theta \cdot (3\cos ^{3}\theta -\cos \theta )\\Y_{5}^{3}(\theta ,\varphi )&={-1 \over 32}{\sqrt {385 \over \pi }}\cdot \mathrm {e} ^{3i\varphi }\cdot \sin ^{3}\theta \cdot (9\cos ^{2}\theta -1)\\Y_{5}^{4}(\theta ,\varphi )&={3 \over 16}{\sqrt {385 \over 2\pi }}\cdot \mathrm {e} ^{4i\varphi }\cdot \sin ^{4}\theta \cdot \cos \theta \\Y_{5}^{5}(\theta ,\varphi )&={-3 \over 32}{\sqrt {77 \over \pi }}\cdot \mathrm {e} ^{5i\varphi }\cdot \sin ^{5}\theta \end{aligned}}}

l = 6

[edit]

Y 6 - 6 ( th , ph ) = 1 64 3003 p e - 6 i ph sin 6 th Y 6 - 5 ( th , ph ) = 3 32 1001 p e - 5 i ph sin 5 th cos th Y 6 - 4 ( th , ph ) = 3 32 91 2 p e - 4 i ph sin 4 th ( 11 cos 2 th - 1 ) Y 6 - 3 ( th , ph ) = 1 32 1365 p e - 3 i ph sin 3 th ( 11 cos 3 th - 3 cos th ) Y 6 - 2 ( th , ph ) = 1 64 1365 p e - 2 i ph sin 2 th ( 33 cos 4 th - 18 cos 2 th + 1 ) Y 6 - 1 ( th , ph ) = 1 16 273 2 p e - i ph sin th ( 33 cos 5 th - 30 cos 3 th + 5 cos th ) Y 6 0 ( th , ph ) = 1 32 13 p ( 231 cos 6 th - 315 cos 4 th + 105 cos 2 th - 5 ) Y 6 1 ( th , ph ) = - 1 16 273 2 p e i ph sin th ( 33 cos 5 th - 30 cos 3 th + 5 cos th ) Y 6 2 ( th , ph ) = 1 64 1365 p e 2 i ph sin 2 th ( 33 cos 4 th - 18 cos 2 th + 1 ) Y 6 3 ( th , ph ) = - 1 32 1365 p e 3 i ph sin 3 th ( 11 cos 3 th - 3 cos th ) Y 6 4 ( th , ph ) = 3 32 91 2 p e 4 i ph sin 4 th ( 11 cos 2 th - 1 ) Y 6 5 ( th , ph ) = - 3 32 1001 p e 5 i ph sin 5 th cos th Y 6 6 ( th , ph ) = 1 64 3003 p e 6 i ph sin 6 th {\displaystyle {\begin{aligned}Y_{6}^{-6}(\theta ,\varphi )&={1 \over 64}{\sqrt {3003 \over \pi }}\cdot \mathrm {e} ^{-6i\varphi }\cdot \sin ^{6}\theta \\Y_{6}^{-5}(\theta ,\varphi )&={3 \over 32}{\sqrt {1001 \over \pi }}\cdot \mathrm {e} ^{-5i\varphi }\cdot \sin ^{5}\theta \cdot \cos \theta \\Y_{6}^{-4}(\theta ,\varphi )&={3 \over 32}{\sqrt {91 \over 2\pi }}\cdot \mathrm {e} ^{-4i\varphi }\cdot \sin ^{4}\theta \cdot (11\cos ^{2}\theta -1)\\Y_{6}^{-3}(\theta ,\varphi )&={1 \over 32}{\sqrt {1365 \over \pi }}\cdot \mathrm {e} ^{-3i\varphi }\cdot \sin ^{3}\theta \cdot (11\cos ^{3}\theta -3\cos \theta )\\Y_{6}^{-2}(\theta ,\varphi )&={1 \over 64}{\sqrt {1365 \over \pi }}\cdot \mathrm {e} ^{-2i\varphi }\cdot \sin ^{2}\theta \cdot (33\cos ^{4}\theta -18\cos ^{2}\theta +1)\\Y_{6}^{-1}(\theta ,\varphi )&={1 \over 16}{\sqrt {273 \over 2\pi }}\cdot \mathrm {e} ^{-i\varphi }\cdot \sin \theta \cdot (33\cos ^{5}\theta -30\cos ^{3}\theta +5\cos \theta )\\Y_{6}^{0}(\theta ,\varphi )&={1 \over 32}{\sqrt {13 \over \pi }}\cdot (231\cos ^{6}\theta -315\cos ^{4}\theta +105\cos ^{2}\theta -5)\\Y_{6}^{1}(\theta ,\varphi )&=-{1 \over 16}{\sqrt {273 \over 2\pi }}\cdot \mathrm {e} ^{i\varphi }\cdot \sin \theta \cdot (33\cos ^{5}\theta -30\cos ^{3}\theta +5\cos \theta )\\Y_{6}^{2}(\theta ,\varphi )&={1 \over 64}{\sqrt {1365 \over \pi }}\cdot \mathrm {e} ^{2i\varphi }\cdot \sin ^{2}\theta \cdot (33\cos ^{4}\theta -18\cos ^{2}\theta +1)\\Y_{6}^{3}(\theta ,\varphi )&=-{1 \over 32}{\sqrt {1365 \over \pi }}\cdot \mathrm {e} ^{3i\varphi }\cdot \sin ^{3}\theta \cdot (11\cos ^{3}\theta -3\cos \theta )\\Y_{6}^{4}(\theta ,\varphi )&={3 \over 32}{\sqrt {91 \over 2\pi }}\cdot \mathrm {e} ^{4i\varphi }\cdot \sin ^{4}\theta \cdot (11\cos ^{2}\theta -1)\\Y_{6}^{5}(\theta ,\varphi )&=-{3 \over 32}{\sqrt {1001 \over \pi }}\cdot \mathrm {e} ^{5i\varphi }\cdot \sin ^{5}\theta \cdot \cos \theta \\Y_{6}^{6}(\theta ,\varphi )&={1 \over 64}{\sqrt {3003 \over \pi }}\cdot \mathrm {e} ^{6i\varphi }\cdot \sin ^{6}\theta \end{aligned}}}

l = 7

[edit]

Y 7 - 7 ( th , ph ) = 3 64 715 2 p e - 7 i ph sin 7 th Y 7 - 6 ( th , ph ) = 3 64 5005 p e - 6 i ph sin 6 th cos th Y 7 - 5 ( th , ph ) = 3 64 385 2 p e - 5 i ph sin 5 th ( 13 cos 2 th - 1 ) Y 7 - 4 ( th , ph ) = 3 32 385 2 p e - 4 i ph sin 4 th ( 13 cos 3 th - 3 cos th ) Y 7 - 3 ( th , ph ) = 3 64 35 2 p e - 3 i ph sin 3 th ( 143 cos 4 th - 66 cos 2 th + 3 ) Y 7 - 2 ( th , ph ) = 3 64 35 p e - 2 i ph sin 2 th ( 143 cos 5 th - 110 cos 3 th + 15 cos th ) Y 7 - 1 ( th , ph ) = 1 64 105 2 p e - i ph sin th ( 429 cos 6 th - 495 cos 4 th + 135 cos 2 th - 5 ) Y 7 0 ( th , ph ) = 1 32 15 p ( 429 cos 7 th - 693 cos 5 th + 315 cos 3 th - 35 cos th ) Y 7 1 ( th , ph ) = - 1 64 105 2 p e i ph sin th ( 429 cos 6 th - 495 cos 4 th + 135 cos 2 th - 5 ) Y 7 2 ( th , ph ) = 3 64 35 p e 2 i ph sin 2 th ( 143 cos 5 th - 110 cos 3 th + 15 cos th ) Y 7 3 ( th , ph ) = - 3 64 35 2 p e 3 i ph sin 3 th ( 143 cos 4 th - 66 cos 2 th + 3 ) Y 7 4 ( th , ph ) = 3 32 385 2 p e 4 i ph sin 4 th ( 13 cos 3 th - 3 cos th ) Y 7 5 ( th , ph ) = - 3 64 385 2 p e 5 i ph sin 5 th ( 13 cos 2 th - 1 ) Y 7 6 ( th , ph ) = 3 64 5005 p e 6 i ph sin 6 th cos th Y 7 7 ( th , ph ) = - 3 64 715 2 p e 7 i ph sin 7 th {\displaystyle {\begin{aligned}Y_{7}^{-7}(\theta ,\varphi )&={3 \over 64}{\sqrt {715 \over 2\pi }}\cdot \mathrm {e} ^{-7i\varphi }\cdot \sin ^{7}\theta \\Y_{7}^{-6}(\theta ,\varphi )&={3 \over 64}{\sqrt {5005 \over \pi }}\cdot \mathrm {e} ^{-6i\varphi }\cdot \sin ^{6}\theta \cdot \cos \theta \\Y_{7}^{-5}(\theta ,\varphi )&={3 \over 64}{\sqrt {385 \over 2\pi }}\cdot \mathrm {e} ^{-5i\varphi }\cdot \sin ^{5}\theta \cdot (13\cos ^{2}\theta -1)\\Y_{7}^{-4}(\theta ,\varphi )&={3 \over 32}{\sqrt {385 \over 2\pi }}\cdot \mathrm {e} ^{-4i\varphi }\cdot \sin ^{4}\theta \cdot (13\cos ^{3}\theta -3\cos \theta )\\Y_{7}^{-3}(\theta ,\varphi )&={3 \over 64}{\sqrt {35 \over 2\pi }}\cdot \mathrm {e} ^{-3i\varphi }\cdot \sin ^{3}\theta \cdot (143\cos ^{4}\theta -66\cos ^{2}\theta +3)\\Y_{7}^{-2}(\theta ,\varphi )&={3 \over 64}{\sqrt {35 \over \pi }}\cdot \mathrm {e} ^{-2i\varphi }\cdot \sin ^{2}\theta \cdot (143\cos ^{5}\theta -110\cos ^{3}\theta +15\cos \theta )\\Y_{7}^{-1}(\theta ,\varphi )&={1 \over 64}{\sqrt {105 \over 2\pi }}\cdot \mathrm {e} ^{-i\varphi }\cdot \sin \theta \cdot (429\cos ^{6}\theta -495\cos ^{4}\theta +135\cos ^{2}\theta -5)\\Y_{7}^{0}(\theta ,\varphi )&={1 \over 32}{\sqrt {15 \over \pi }}\cdot (429\cos ^{7}\theta -693\cos ^{5}\theta +315\cos ^{3}\theta -35\cos \theta )\\Y_{7}^{1}(\theta ,\varphi )&=-{1 \over 64}{\sqrt {105 \over 2\pi }}\cdot \mathrm {e} ^{i\varphi }\cdot \sin \theta \cdot (429\cos ^{6}\theta -495\cos ^{4}\theta +135\cos ^{2}\theta -5)\\Y_{7}^{2}(\theta ,\varphi )&={3 \over 64}{\sqrt {35 \over \pi }}\cdot \mathrm {e} ^{2i\varphi }\cdot \sin ^{2}\theta \cdot (143\cos ^{5}\theta -110\cos ^{3}\theta +15\cos \theta )\\Y_{7}^{3}(\theta ,\varphi )&=-{3 \over 64}{\sqrt {35 \over 2\pi }}\cdot \mathrm {e} ^{3i\varphi }\cdot \sin ^{3}\theta \cdot (143\cos ^{4}\theta -66\cos ^{2}\theta +3)\\Y_{7}^{4}(\theta ,\varphi )&={3 \over 32}{\sqrt {385 \over 2\pi }}\cdot \mathrm {e} ^{4i\varphi }\cdot \sin ^{4}\theta \cdot (13\cos ^{3}\theta -3\cos \theta )\\Y_{7}^{5}(\theta ,\varphi )&=-{3 \over 64}{\sqrt {385 \over 2\pi }}\cdot \mathrm {e} ^{5i\varphi }\cdot \sin ^{5}\theta \cdot (13\cos ^{2}\theta -1)\\Y_{7}^{6}(\theta ,\varphi )&={3 \over 64}{\sqrt {5005 \over \pi }}\cdot \mathrm {e} ^{6i\varphi }\cdot \sin ^{6}\theta \cdot \cos \theta \\Y_{7}^{7}(\theta ,\varphi )&=-{3 \over 64}{\sqrt {715 \over 2\pi }}\cdot \mathrm {e} ^{7i\varphi }\cdot \sin ^{7}\theta \end{aligned}}}

l = 8

[edit]

Y 8 - 8 ( th , ph ) = 3 256 12155 2 p e - 8 i ph sin 8 th Y 8 - 7 ( th , ph ) = 3 64 12155 2 p e - 7 i ph sin 7 th cos th Y 8 - 6 ( th , ph ) = 1 128 7293 p e - 6 i ph sin 6 th ( 15 cos 2 th - 1 ) Y 8 - 5 ( th , ph ) = 3 64 17017 2 p e - 5 i ph sin 5 th ( 5 cos 3 th - cos th ) Y 8 - 4 ( th , ph ) = 3 128 1309 2 p e - 4 i ph sin 4 th ( 65 cos 4 th - 26 cos 2 th + 1 ) Y 8 - 3 ( th , ph ) = 1 64 19635 2 p e - 3 i ph sin 3 th ( 39 cos 5 th - 26 cos 3 th + 3 cos th ) Y 8 - 2 ( th , ph ) = 3 128 595 p e - 2 i ph sin 2 th ( 143 cos 6 th - 143 cos 4 th + 33 cos 2 th - 1 ) Y 8 - 1 ( th , ph ) = 3 64 17 2 p e - i ph sin th ( 715 cos 7 th - 1001 cos 5 th + 385 cos 3 th - 35 cos th ) Y 8 0 ( th , ph ) = 1 256 17 p ( 6435 cos 8 th - 12012 cos 6 th + 6930 cos 4 th - 1260 cos 2 th + 35 ) Y 8 1 ( th , ph ) = - 3 64 17 2 p e i ph sin th ( 715 cos 7 th - 1001 cos 5 th + 385 cos 3 th - 35 cos th ) Y 8 2 ( th , ph ) = 3 128 595 p e 2 i ph sin 2 th ( 143 cos 6 th - 143 cos 4 th + 33 cos 2 th - 1 ) Y 8 3 ( th , ph ) = - 1 64 19635 2 p e 3 i ph sin 3 th ( 39 cos 5 th - 26 cos 3 th + 3 cos th ) Y 8 4 ( th , ph ) = 3 128 1309 2 p e 4 i ph sin 4 th ( 65 cos 4 th - 26 cos 2 th + 1 ) Y 8 5 ( th , ph ) = - 3 64 17017 2 p e 5 i ph sin 5 th ( 5 cos 3 th - cos th ) Y 8 6 ( th , ph ) = 1 128 7293 p e 6 i ph sin 6 th ( 15 cos 2 th - 1 ) Y 8 7 ( th , ph ) = - 3 64 12155 2 p e 7 i ph sin 7 th cos th Y 8 8 ( th , ph ) = 3 256 12155 2 p e 8 i ph sin 8 th {\displaystyle {\begin{aligned}Y_{8}^{-8}(\theta ,\varphi )&={3 \over 256}{\sqrt {12155 \over 2\pi }}\cdot \mathrm {e} ^{-8i\varphi }\cdot \sin ^{8}\theta \\Y_{8}^{-7}(\theta ,\varphi )&={3 \over 64}{\sqrt {12155 \over 2\pi }}\cdot \mathrm {e} ^{-7i\varphi }\cdot \sin ^{7}\theta \cdot \cos \theta \\Y_{8}^{-6}(\theta ,\varphi )&={1 \over 128}{\sqrt {7293 \over \pi }}\cdot \mathrm {e} ^{-6i\varphi }\cdot \sin ^{6}\theta \cdot (15\cos ^{2}\theta -1)\\Y_{8}^{-5}(\theta ,\varphi )&={3 \over 64}{\sqrt {17017 \over 2\pi }}\cdot \mathrm {e} ^{-5i\varphi }\cdot \sin ^{5}\theta \cdot (5\cos ^{3}\theta -\cos \theta )\\Y_{8}^{-4}(\theta ,\varphi )&={3 \over 128}{\sqrt {1309 \over 2\pi }}\cdot \mathrm {e} ^{-4i\varphi }\cdot \sin ^{4}\theta \cdot (65\cos ^{4}\theta -26\cos ^{2}\theta +1)\\Y_{8}^{-3}(\theta ,\varphi )&={1 \over 64}{\sqrt {19635 \over 2\pi }}\cdot \mathrm {e} ^{-3i\varphi }\cdot \sin ^{3}\theta \cdot (39\cos ^{5}\theta -26\cos ^{3}\theta +3\cos \theta )\\Y_{8}^{-2}(\theta ,\varphi )&={3 \over 128}{\sqrt {595 \over \pi }}\cdot \mathrm {e} ^{-2i\varphi }\cdot \sin ^{2}\theta \cdot (143\cos ^{6}\theta -143\cos ^{4}\theta +33\cos ^{2}\theta -1)\\Y_{8}^{-1}(\theta ,\varphi )&={3 \over 64}{\sqrt {17 \over 2\pi }}\cdot \mathrm {e} ^{-i\varphi }\cdot \sin \theta \cdot (715\cos ^{7}\theta -1001\cos ^{5}\theta +385\cos ^{3}\theta -35\cos \theta )\\Y_{8}^{0}(\theta ,\varphi )&={1 \over 256}{\sqrt {17 \over \pi }}\cdot (6435\cos ^{8}\theta -12012\cos ^{6}\theta +6930\cos ^{4}\theta -1260\cos ^{2}\theta +35)\\Y_{8}^{1}(\theta ,\varphi )&={-3 \over 64}{\sqrt {17 \over 2\pi }}\cdot \mathrm {e} ^{i\varphi }\cdot \sin \theta \cdot (715\cos ^{7}\theta -1001\cos ^{5}\theta +385\cos ^{3}\theta -35\cos \theta )\\Y_{8}^{2}(\theta ,\varphi )&={3 \over 128}{\sqrt {595 \over \pi }}\cdot \mathrm {e} ^{2i\varphi }\cdot \sin ^{2}\theta \cdot (143\cos ^{6}\theta -143\cos ^{4}\theta +33\cos ^{2}\theta -1)\\Y_{8}^{3}(\theta ,\varphi )&={-1 \over 64}{\sqrt {19635 \over 2\pi }}\cdot \mathrm {e} ^{3i\varphi }\cdot \sin ^{3}\theta \cdot (39\cos ^{5}\theta -26\cos ^{3}\theta +3\cos \theta )\\Y_{8}^{4}(\theta ,\varphi )&={3 \over 128}{\sqrt {1309 \over 2\pi }}\cdot \mathrm {e} ^{4i\varphi }\cdot \sin ^{4}\theta \cdot (65\cos ^{4}\theta -26\cos ^{2}\theta +1)\\Y_{8}^{5}(\theta ,\varphi )&={-3 \over 64}{\sqrt {17017 \over 2\pi }}\cdot \mathrm {e} ^{5i\varphi }\cdot \sin ^{5}\theta \cdot (5\cos ^{3}\theta -\cos \theta )\\Y_{8}^{6}(\theta ,\varphi )&={1 \over 128}{\sqrt {7293 \over \pi }}\cdot \mathrm {e} ^{6i\varphi }\cdot \sin ^{6}\theta \cdot (15\cos ^{2}\theta -1)\\Y_{8}^{7}(\theta ,\varphi )&={-3 \over 64}{\sqrt {12155 \over 2\pi }}\cdot \mathrm {e} ^{7i\varphi }\cdot \sin ^{7}\theta \cdot \cos \theta \\Y_{8}^{8}(\theta ,\varphi )&={3 \over 256}{\sqrt {12155 \over 2\pi }}\cdot \mathrm {e} ^{8i\varphi }\cdot \sin ^{8}\theta \end{aligned}}}

l = 9

[edit]

Y 9 - 9 ( th , ph ) = 1 512 230945 p e - 9 i ph sin 9 th Y 9 - 8 ( th , ph ) = 3 256 230945 2 p e - 8 i ph sin 8 th cos th Y 9 - 7 ( th , ph ) = 3 512 13585 p e - 7 i ph sin 7 th ( 17 cos 2 th - 1 ) Y 9 - 6 ( th , ph ) = 1 128 40755 p e - 6 i ph sin 6 th ( 17 cos 3 th - 3 cos th ) Y 9 - 5 ( th , ph ) = 3 256 2717 p e - 5 i ph sin 5 th ( 85 cos 4 th - 30 cos 2 th + 1 ) Y 9 - 4 ( th , ph ) = 3 128 95095 2 p e - 4 i ph sin 4 th ( 17 cos 5 th - 10 cos 3 th + cos th ) Y 9 - 3 ( th , ph ) = 1 256 21945 p e - 3 i ph sin 3 th ( 221 cos 6 th - 195 cos 4 th + 39 cos 2 th - 1 ) Y 9 - 2 ( th , ph ) = 3 128 1045 p e - 2 i ph sin 2 th ( 221 cos 7 th - 273 cos 5 th + 91 cos 3 th - 7 cos th ) Y 9 - 1 ( th , ph ) = 3 256 95 2 p e - i ph sin th ( 2431 cos 8 th - 4004 cos 6 th + 2002 cos 4 th - 308 cos 2 th + 7 ) Y 9 0 ( th , ph ) = 1 256 19 p ( 12155 cos 9 th - 25740 cos 7 th + 18018 cos 5 th - 4620 cos 3 th + 315 cos th ) Y 9 1 ( th , ph ) = - 3 256 95 2 p e i ph sin th ( 2431 cos 8 th - 4004 cos 6 th + 2002 cos 4 th - 308 cos 2 th + 7 ) Y 9 2 ( th , ph ) = 3 128 1045 p e 2 i ph sin 2 th ( 221 cos 7 th - 273 cos 5 th + 91 cos 3 th - 7 cos th ) Y 9 3 ( th , ph ) = - 1 256 21945 p e 3 i ph sin 3 th ( 221 cos 6 th - 195 cos 4 th + 39 cos 2 th - 1 ) Y 9 4 ( th , ph ) = 3 128 95095 2 p e 4 i ph sin 4 th ( 17 cos 5 th - 10 cos 3 th + cos th ) Y 9 5 ( th , ph ) = - 3 256 2717 p e 5 i ph sin 5 th ( 85 cos 4 th - 30 cos 2 th + 1 ) Y 9 6 ( th , ph ) = 1 128 40755 p e 6 i ph sin 6 th ( 17 cos 3 th - 3 cos th ) Y 9 7 ( th , ph ) = - 3 512 13585 p e 7 i ph sin 7 th ( 17 cos 2 th - 1 ) Y 9 8 ( th , ph ) = 3 256 230945 2 p e 8 i ph sin 8 th cos th Y 9 9 ( th , ph ) = - 1 512 230945 p e 9 i ph sin 9 th {\displaystyle {\begin{aligned}Y_{9}^{-9}(\theta ,\varphi )&={1 \over 512}{\sqrt {230945 \over \pi }}\cdot \mathrm {e} ^{-9i\varphi }\cdot \sin ^{9}\theta \\Y_{9}^{-8}(\theta ,\varphi )&={3 \over 256}{\sqrt {230945 \over 2\pi }}\cdot \mathrm {e} ^{-8i\varphi }\cdot \sin ^{8}\theta \cdot \cos \theta \\Y_{9}^{-7}(\theta ,\varphi )&={3 \over 512}{\sqrt {13585 \over \pi }}\cdot \mathrm {e} ^{-7i\varphi }\cdot \sin ^{7}\theta \cdot (17\cos ^{2}\theta -1)\\Y_{9}^{-6}(\theta ,\varphi )&={1 \over 128}{\sqrt {40755 \over \pi }}\cdot \mathrm {e} ^{-6i\varphi }\cdot \sin ^{6}\theta \cdot (17\cos ^{3}\theta -3\cos \theta )\\Y_{9}^{-5}(\theta ,\varphi )&={3 \over 256}{\sqrt {2717 \over \pi }}\cdot \mathrm {e} ^{-5i\varphi }\cdot \sin ^{5}\theta \cdot (85\cos ^{4}\theta -30\cos ^{2}\theta +1)\\Y_{9}^{-4}(\theta ,\varphi )&={3 \over 128}{\sqrt {95095 \over 2\pi }}\cdot e^{-4i\varphi }\cdot \sin ^{4}\theta \cdot (17\cos ^{5}\theta -10\cos ^{3}\theta +\cos \theta )\\Y_{9}^{-3}(\theta ,\varphi )&={1 \over 256}{\sqrt {21945 \over \pi }}\cdot \mathrm {e} ^{-3i\varphi }\cdot \sin ^{3}\theta \cdot (221\cos ^{6}\theta -195\cos ^{4}\theta +39\cos ^{2}\theta -1)\\Y_{9}^{-2}(\theta ,\varphi )&={3 \over 128}{\sqrt {1045 \over \pi }}\cdot \mathrm {e} ^{-2i\varphi }\cdot \sin ^{2}\theta \cdot (221\cos ^{7}\theta -273\cos ^{5}\theta +91\cos ^{3}\theta -7\cos \theta )\\Y_{9}^{-1}(\theta ,\varphi )&={3 \over 256}{\sqrt {95 \over 2\pi }}\cdot \mathrm {e} ^{-i\varphi }\cdot \sin \theta \cdot (2431\cos ^{8}\theta -4004\cos ^{6}\theta +2002\cos ^{4}\theta -308\cos ^{2}\theta +7)\\Y_{9}^{0}(\theta ,\varphi )&={1 \over 256}{\sqrt {19 \over \pi }}\cdot (12155\cos ^{9}\theta -25740\cos ^{7}\theta +18018\cos ^{5}\theta -4620\cos ^{3}\theta +315\cos \theta )\\Y_{9}^{1}(\theta ,\varphi )&={-3 \over 256}{\sqrt {95 \over 2\pi }}\cdot \mathrm {e} ^{i\varphi }\cdot \sin \theta \cdot (2431\cos ^{8}\theta -4004\cos ^{6}\theta +2002\cos ^{4}\theta -308\cos ^{2}\theta +7)\\Y_{9}^{2}(\theta ,\varphi )&={3 \over 128}{\sqrt {1045 \over \pi }}\cdot \mathrm {e} ^{2i\varphi }\cdot \sin ^{2}\theta \cdot (221\cos ^{7}\theta -273\cos ^{5}\theta +91\cos ^{3}\theta -7\cos \theta )\\Y_{9}^{3}(\theta ,\varphi )&={-1 \over 256}{\sqrt {21945 \over \pi }}\cdot \mathrm {e} ^{3i\varphi }\cdot \sin ^{3}\theta \cdot (221\cos ^{6}\theta -195\cos ^{4}\theta +39\cos ^{2}\theta -1)\\Y_{9}^{4}(\theta ,\varphi )&={3 \over 128}{\sqrt {95095 \over 2\pi }}\cdot \mathrm {e} ^{4i\varphi }\cdot \sin ^{4}\theta \cdot (17\cos ^{5}\theta -10\cos ^{3}\theta +\cos \theta )\\Y_{9}^{5}(\theta ,\varphi )&={-3 \over 256}{\sqrt {2717 \over \pi }}\cdot \mathrm {e} ^{5i\varphi }\cdot \sin ^{5}\theta \cdot (85\cos ^{4}\theta -30\cos ^{2}\theta +1)\\Y_{9}^{6}(\theta ,\varphi )&={1 \over 128}{\sqrt {40755 \over \pi }}\cdot \mathrm {e} ^{6i\varphi }\cdot \sin ^{6}\theta \cdot (17\cos ^{3}\theta -3\cos \theta )\\Y_{9}^{7}(\theta ,\varphi )&={-3 \over 512}{\sqrt {13585 \over \pi }}\cdot \mathrm {e} ^{7i\varphi }\cdot \sin ^{7}\theta \cdot (17\cos ^{2}\theta -1)\\Y_{9}^{8}(\theta ,\varphi )&={3 \over 256}{\sqrt {230945 \over 2\pi }}\cdot \mathrm {e} ^{8i\varphi }\cdot \sin ^{8}\theta \cdot \cos \theta \\Y_{9}^{9}(\theta ,\varphi )&={-1 \over 512}{\sqrt {230945 \over \pi }}\cdot \mathrm {e} ^{9i\varphi }\cdot \sin ^{9}\theta \end{aligned}}}

l = 10

[edit]

Y 10 - 10 ( th , ph ) = 1 1024 969969 p e - 10 i ph sin 10 th Y 10 - 9 ( th , ph ) = 1 512 4849845 p e - 9 i ph sin 9 th cos th Y 10 - 8 ( th , ph ) = 1 512 255255 2 p e - 8 i ph sin 8 th ( 19 cos 2 th - 1 ) Y 10 - 7 ( th , ph ) = 3 512 85085 p e - 7 i ph sin 7 th ( 19 cos 3 th - 3 cos th ) Y 10 - 6 ( th , ph ) = 3 1024 5005 p e - 6 i ph sin 6 th ( 323 cos 4 th - 102 cos 2 th + 3 ) Y 10 - 5 ( th , ph ) = 3 256 1001 p e - 5 i ph sin 5 th ( 323 cos 5 th - 170 cos 3 th + 15 cos th ) Y 10 - 4 ( th , ph ) = 3 256 5005 2 p e - 4 i ph sin 4 th ( 323 cos 6 th - 255 cos 4 th + 45 cos 2 th - 1 ) Y 10 - 3 ( th , ph ) = 3 256 5005 p e - 3 i ph sin 3 th ( 323 cos 7 th - 357 cos 5 th + 105 cos 3 th - 7 cos th ) Y 10 - 2 ( th , ph ) = 3 512 385 2 p e - 2 i ph sin 2 th ( 4199 cos 8 th - 6188 cos 6 th + 2730 cos 4 th - 364 cos 2 th + 7 ) Y 10 - 1 ( th , ph ) = 1 256 1155 2 p e - i ph sin th ( 4199 cos 9 th - 7956 cos 7 th + 4914 cos 5 th - 1092 cos 3 th + 63 cos th ) Y 10 0 ( th , ph ) = 1 512 21 p ( 46189 cos 10 th - 109395 cos 8 th + 90090 cos 6 th - 30030 cos 4 th + 3465 cos 2 th - 63 ) Y 10 1 ( th , ph ) = - 1 256 1155 2 p e i ph sin th ( 4199 cos 9 th - 7956 cos 7 th + 4914 cos 5 th - 1092 cos 3 th + 63 cos th ) Y 10 2 ( th , ph ) = 3 512 385 2 p e 2 i ph sin 2 th ( 4199 cos 8 th - 6188 cos 6 th + 2730 cos 4 th - 364 cos 2 th + 7 ) Y 10 3 ( th , ph ) = - 3 256 5005 p e 3 i ph sin 3 th ( 323 cos 7 th - 357 cos 5 th + 105 cos 3 th - 7 cos th ) Y 10 4 ( th , ph ) = 3 256 5005 2 p e 4 i ph sin 4 th ( 323 cos 6 th - 255 cos 4 th + 45 cos 2 th - 1 ) Y 10 5 ( th , ph ) = - 3 256 1001 p e 5 i ph sin 5 th ( 323 cos 5 th - 170 cos 3 th + 15 cos th ) Y 10 6 ( th , ph ) = 3 1024 5005 p e 6 i ph sin 6 th ( 323 cos 4 th - 102 cos 2 th + 3 ) Y 10 7 ( th , ph ) = - 3 512 85085 p e 7 i ph sin 7 th ( 19 cos 3 th - 3 cos th ) Y 10 8 ( th , ph ) = 1 512 255255 2 p e 8 i ph sin 8 th ( 19 cos 2 th - 1 ) Y 10 9 ( th , ph ) = - 1 512 4849845 p e 9 i ph sin 9 th cos th Y 10 10 ( th , ph ) = 1 1024 969969 p e 10 i ph sin 10 th {\displaystyle {\begin{aligned}Y_{10}^{-10}(\theta ,\varphi )&={1 \over 1024}{\sqrt {969969 \over \pi }}\cdot \mathrm {e} ^{-10i\varphi }\cdot \sin ^{10}\theta \\Y_{10}^{-9}(\theta ,\varphi )&={1 \over 512}{\sqrt {4849845 \over \pi }}\cdot \mathrm {e} ^{-9i\varphi }\cdot \sin ^{9}\theta \cdot \cos \theta \\Y_{10}^{-8}(\theta ,\varphi )&={1 \over 512}{\sqrt {255255 \over 2\pi }}\cdot \mathrm {e} ^{-8i\varphi }\cdot \sin ^{8}\theta \cdot (19\cos ^{2}\theta -1)\\Y_{10}^{-7}(\theta ,\varphi )&={3 \over 512}{\sqrt {85085 \over \pi }}\cdot \mathrm {e} ^{-7i\varphi }\cdot \sin ^{7}\theta \cdot (19\cos ^{3}\theta -3\cos \theta )\\Y_{10}^{-6}(\theta ,\varphi )&={3 \over 1024}{\sqrt {5005 \over \pi }}\cdot \mathrm {e} ^{-6i\varphi }\cdot \sin ^{6}\theta \cdot (323\cos ^{4}\theta -102\cos ^{2}\theta +3)\\Y_{10}^{-5}(\theta ,\varphi )&={3 \over 256}{\sqrt {1001 \over \pi }}\cdot \mathrm {e} ^{-5i\varphi }\cdot \sin ^{5}\theta \cdot (323\cos ^{5}\theta -170\cos ^{3}\theta +15\cos \theta )\\Y_{10}^{-4}(\theta ,\varphi )&={3 \over 256}{\sqrt {5005 \over 2\pi }}\cdot \mathrm {e} ^{-4i\varphi }\cdot \sin ^{4}\theta \cdot (323\cos ^{6}\theta -255\cos ^{4}\theta +45\cos ^{2}\theta -1)\\Y_{10}^{-3}(\theta ,\varphi )&={3 \over 256}{\sqrt {5005 \over \pi }}\cdot \mathrm {e} ^{-3i\varphi }\cdot \sin ^{3}\theta \cdot (323\cos ^{7}\theta -357\cos ^{5}\theta +105\cos ^{3}\theta -7\cos \theta )\\Y_{10}^{-2}(\theta ,\varphi )&={3 \over 512}{\sqrt {385 \over 2\pi }}\cdot \mathrm {e} ^{-2i\varphi }\cdot \sin ^{2}\theta \cdot (4199\cos ^{8}\theta -6188\cos ^{6}\theta +2730\cos ^{4}\theta -364\cos ^{2}\theta +7)\\Y_{10}^{-1}(\theta ,\varphi )&={1 \over 256}{\sqrt {1155 \over 2\pi }}\cdot \mathrm {e} ^{-i\varphi }\cdot \sin \theta \cdot (4199\cos ^{9}\theta -7956\cos ^{7}\theta +4914\cos ^{5}\theta -1092\cos ^{3}\theta +63\cos \theta )\\Y_{10}^{0}(\theta ,\varphi )&={1 \over 512}{\sqrt {21 \over \pi }}\cdot (46189\cos ^{10}\theta -109395\cos ^{8}\theta +90090\cos ^{6}\theta -30030\cos ^{4}\theta +3465\cos ^{2}\theta -63)\\Y_{10}^{1}(\theta ,\varphi )&={-1 \over 256}{\sqrt {1155 \over 2\pi }}\cdot \mathrm {e} ^{i\varphi }\cdot \sin \theta \cdot (4199\cos ^{9}\theta -7956\cos ^{7}\theta +4914\cos ^{5}\theta -1092\cos ^{3}\theta +63\cos \theta )\\Y_{10}^{2}(\theta ,\varphi )&={3 \over 512}{\sqrt {385 \over 2\pi }}\cdot \mathrm {e} ^{2i\varphi }\cdot \sin ^{2}\theta \cdot (4199\cos ^{8}\theta -6188\cos ^{6}\theta +2730\cos ^{4}\theta -364\cos ^{2}\theta +7)\\Y_{10}^{3}(\theta ,\varphi )&={-3 \over 256}{\sqrt {5005 \over \pi }}\cdot \mathrm {e} ^{3i\varphi }\cdot \sin ^{3}\theta \cdot (323\cos ^{7}\theta -357\cos ^{5}\theta +105\cos ^{3}\theta -7\cos \theta )\\Y_{10}^{4}(\theta ,\varphi )&={3 \over 256}{\sqrt {5005 \over 2\pi }}\cdot \mathrm {e} ^{4i\varphi }\cdot \sin ^{4}\theta \cdot (323\cos ^{6}\theta -255\cos ^{4}\theta +45\cos ^{2}\theta -1)\\Y_{10}^{5}(\theta ,\varphi )&={-3 \over 256}{\sqrt {1001 \over \pi }}\cdot \mathrm {e} ^{5i\varphi }\cdot \sin ^{5}\theta \cdot (323\cos ^{5}\theta -170\cos ^{3}\theta +15\cos \theta )\\Y_{10}^{6}(\theta ,\varphi )&={3 \over 1024}{\sqrt {5005 \over \pi }}\cdot \mathrm {e} ^{6i\varphi }\cdot \sin ^{6}\theta \cdot (323\cos ^{4}\theta -102\cos ^{2}\theta +3)\\Y_{10}^{7}(\theta ,\varphi )&={-3 \over 512}{\sqrt {85085 \over \pi }}\cdot \mathrm {e} ^{7i\varphi }\cdot \sin ^{7}\theta \cdot (19\cos ^{3}\theta -3\cos \theta )\\Y_{10}^{8}(\theta ,\varphi )&={1 \over 512}{\sqrt {255255 \over 2\pi }}\cdot \mathrm {e} ^{8i\varphi }\cdot \sin ^{8}\theta \cdot (19\cos ^{2}\theta -1)\\Y_{10}^{9}(\theta ,\varphi )&={-1 \over 512}{\sqrt {4849845 \over \pi }}\cdot \mathrm {e} ^{9i\varphi }\cdot \sin ^{9}\theta \cdot \cos \theta \\Y_{10}^{10}(\theta ,\varphi )&={1 \over 1024}{\sqrt {969969 \over \pi }}\cdot \mathrm {e} ^{10i\varphi }\cdot \sin ^{10}\theta \end{aligned}}}

Visualization of complex spherical harmonics

[edit]

2D polar/azimuthal angle maps

[edit]

Below the complex spherical harmonics are represented on 2D plots with the azimuthal angle, ph {\displaystyle \phi } , on the horizontal axis and the polar angle, th {\displaystyle \theta } , on the vertical axis. The saturation of the color at any point represents the magnitude of the spherical harmonic and the hue represents the phase.

The nodal 'line of latitude' are visible as horizontal white lines. The nodal 'line of longitude' are visible as vertical white lines.

Visual Array of Complex Spherical Harmonics Represented as 2D Theta/Phi Maps

Polar plots

[edit]

Below the complex spherical harmonics are represented on polar plots. The magnitude of the spherical harmonic at particular polar and azimuthal angles is represented by the saturation of the color at that point and the phase is represented by the hue at that point.

Visual Array of Complex Spherical Harmonics Represented with Polar Plot

Polar plots with magnitude as radius

[edit]

Below the complex spherical harmonics are represented on polar plots. The magnitude of the spherical harmonic at particular polar and azimuthal angles is represented by the radius of the plot at that point and the phase is represented by the hue at that point.

Visual Array of Complex Spherical Harmonics Represented with Polar Plot with Magnitude Mapped to Radius

Real spherical harmonics

[edit]

For each real spherical harmonic, the corresponding atomic orbital symbol (s, p, d, f) is reported as well.[2][3]

For l = 0, ..., 3, see.[4][5]

l = 0

[edit]

Y 0 , 0 = s = Y 0 0 = 1 2 1 p {\displaystyle Y_{0,0}=s=Y_{0}^{0}={\frac {1}{2}}{\sqrt {\frac {1}{\pi }}}}

l = 1

[edit]

Y 1 , - 1 = p y = i 1 2 ( Y 1 - 1 + Y 1 1 ) = 3 4 p y r = 3 4 p sin ( th ) sin ( ph ) Y 1 , 0 = p z = Y 1 0 = 3 4 p z r = 3 4 p cos ( th ) Y 1 , 1 = p x = 1 2 ( Y 1 - 1 - Y 1 1 ) = 3 4 p x r = 3 4 p sin ( th ) cos ( ph ) {\displaystyle {\begin{aligned}Y_{1,-1}&=p_{y}=i{\sqrt {\frac {1}{2}}}\left(Y_{1}^{-1}+Y_{1}^{1}\right)={\sqrt {\frac {3}{4\pi }}}\cdot {\frac {y}{r}}={\sqrt {\frac {3}{4\pi }}}\sin(\theta )\sin(\varphi )\\Y_{1,0}&=p_{z}=Y_{1}^{0}={\sqrt {\frac {3}{4\pi }}}\cdot {\frac {z}{r}}={\sqrt {\frac {3}{4\pi }}}\cos(\theta )\\Y_{1,1}&=p_{x}={\sqrt {\frac {1}{2}}}\left(Y_{1}^{-1}-Y_{1}^{1}\right)={\sqrt {\frac {3}{4\pi }}}\cdot {\frac {x}{r}}={\sqrt {\frac {3}{4\pi }}}\sin(\theta )\cos(\varphi )\end{aligned}}}

l = 2

[edit]

Y 2 , - 2 = d x y = i 1 2 ( Y 2 - 2 - Y 2 2 ) = 1 2 15 p x y r 2 = 1 4 15 p sin 2 ( th ) sin ( 2 ph ) Y 2 , - 1 = d y z = i 1 2 ( Y 2 - 1 + Y 2 1 ) = 1 2 15 p y z r 2 = 1 4 15 p sin ( 2 th ) sin ( ph ) Y 2 , 0 = d z 2 = Y 2 0 = 1 4 5 p 3 z 2 - r 2 r 2 = 1 4 5 p ( 3 cos 2 ( th ) - 1 ) Y 2 , 1 = d x z = 1 2 ( Y 2 - 1 - Y 2 1 ) = 1 2 15 p x z r 2 = 1 4 15 p sin ( 2 th ) cos ( ph ) Y 2 , 2 = d x 2 - y 2 = 1 2 ( Y 2 - 2 + Y 2 2 ) = 1 4 15 p x 2 - y 2 r 2 = 1 4 15 p sin 2 ( th ) cos ( 2 ph ) {\displaystyle {\begin{aligned}Y_{2,-2}&=d_{xy}=i{\sqrt {\frac {1}{2}}}\left(Y_{2}^{-2}-Y_{2}^{2}\right)={\frac {1}{2}}{\sqrt {\frac {15}{\pi }}}\cdot {\frac {xy}{r^{2}}}={\frac {1}{4}}{\sqrt {\frac {15}{\pi }}}\sin ^{2}(\theta )\sin(2\varphi )\\Y_{2,-1}&=d_{yz}=i{\sqrt {\frac {1}{2}}}\left(Y_{2}^{-1}+Y_{2}^{1}\right)={\frac {1}{2}}{\sqrt {\frac {15}{\pi }}}\cdot {\frac {y\cdot z}{r^{2}}}={\frac {1}{4}}{\sqrt {\frac {15}{\pi }}}\sin(2\theta )\sin(\varphi )\\Y_{2,0}&=d_{z^{2}}=Y_{2}^{0}={\frac {1}{4}}{\sqrt {\frac {5}{\pi }}}\cdot {\frac {3z^{2}-r^{2}}{r^{2}}}={\frac {1}{4}}{\sqrt {\frac {5}{\pi }}}(3\cos ^{2}(\theta )-1)\\Y_{2,1}&=d_{xz}={\sqrt {\frac {1}{2}}}\left(Y_{2}^{-1}-Y_{2}^{1}\right)={\frac {1}{2}}{\sqrt {\frac {15}{\pi }}}\cdot {\frac {x\cdot z}{r^{2}}}={\frac {1}{4}}{\sqrt {\frac {15}{\pi }}}\sin(2\theta )\cos(\varphi )\\Y_{2,2}&=d_{x^{2}-y^{2}}={\sqrt {\frac {1}{2}}}\left(Y_{2}^{-2}+Y_{2}^{2}\right)={\frac {1}{4}}{\sqrt {\frac {15}{\pi }}}\cdot {\frac {x^{2}-y^{2}}{r^{2}}}={\frac {1}{4}}{\sqrt {\frac {15}{\pi }}}\sin ^{2}(\theta )\cos(2\varphi )\end{aligned}}}

l = 3

[edit]

Y 3 , - 3 = f y ( 3 x 2 - y 2 ) = i 1 2 ( Y 3 - 3 + Y 3 3 ) = 1 4 35 2 p y ( 3 x 2 - y 2 ) r 3 Y 3 , - 2 = f x y z = i 1 2 ( Y 3 - 2 - Y 3 2 ) = 1 2 105 p x y z r 3 Y 3 , - 1 = f y z 2 = i 1 2 ( Y 3 - 1 + Y 3 1 ) = 1 4 21 2 p y ( 5 z 2 - r 2 ) r 3 Y 3 , 0 = f z 3 = Y 3 0 = 1 4 7 p 5 z 3 - 3 z r 2 r 3 Y 3 , 1 = f x z 2 = 1 2 ( Y 3 - 1 - Y 3 1 ) = 1 4 21 2 p x ( 5 z 2 - r 2 ) r 3 Y 3 , 2 = f z ( x 2 - y 2 ) = 1 2 ( Y 3 - 2 + Y 3 2 ) = 1 4 105 p ( x 2 - y 2 ) z r 3 Y 3 , 3 = f x ( x 2 - 3 y 2 ) = 1 2 ( Y 3 - 3 - Y 3 3 ) = 1 4 35 2 p x ( x 2 - 3 y 2 ) r 3 {\displaystyle {\begin{aligned}Y_{3,-3}&=f_{y(3x^{2}-y^{2})}=i{\sqrt {\frac {1}{2}}}\left(Y_{3}^{-3}+Y_{3}^{3}\right)={\frac {1}{4}}{\sqrt {\frac {35}{2\pi }}}\cdot {\frac {y\left(3x^{2}-y^{2}\right)}{r^{3}}}\\Y_{3,-2}&=f_{xyz}=i{\s qrt {\frac {1}{2}}}\left(Y_{3}^{-2}-Y_{3}^{2}\right)={\frac {1}{2}}{\sqrt {\frac {105}{\pi }}}\cdot {\frac {xy\cdot z}{r^{3}}}\\Y_{3,-1}&=f_{yz^{2}}=i{\sqrt {\frac {1}{2}}}\left(Y_{3}^{-1}+Y_{3}^{1}\right)={\frac {1}{4}}{\sqrt {\frac {21}{2\pi }}}\cdot {\frac {y\cdot (5z^{2}-r^{2})}{r^{3}}}\\Y_{3,0}&=f_{z^{3}}=Y_{3}^{0}={\frac {1}{4}}{\sqrt {\frac {7}{\pi }}}\cdot {\frac {5z^{3}-3zr^{2}}{r^{3}}}\\Y_{3,1}&=f_{xz^{2}}={\sqrt {\frac {1}{2}}}\left(Y_{3}^{-1}-Y_{3}^{1}\right)={\frac {1}{4}}{\sqrt {\frac {21}{2\pi }}}\cdot {\frac {x\cdot (5z^{2}-r^{2})}{r^{3}}}\\Y_{3,2}&=f_{z(x^{2}-y^{2})}={\sqrt {\frac {1}{2}}}\left(Y_{3}^{-2}+Y_{3}^{2}\right)={\frac {1}{4}}{\sqrt {\frac {105}{\pi }}}\cdot {\frac {\left(x^{2}-y^{2}\right)\cdot z}{r^{3}}}\\Y_{3,3}&=f_{x(x^{2}-3y^{2})}={\sqrt {\frac {1}{2}}}\left(Y_{3}^{-3}-Y_{3}^{3}\right)={\frac {1}{4}}{\sqrt {\frac {35}{2\pi }}}\cdot {\frac {x\left(x^{2}-3y^{2}\right)}{r^{3}}}\end{aligned}}}

l = 4

[edit]

Y 4 , - 4 = i 1 2 ( Y 4 - 4 - Y 4 4 ) = 3 4 35 p x y ( x 2 - y 2 ) r 4 Y 4 , - 3 = i 1 2 ( Y 4 - 3 + Y 4 3 ) = 3 4 35 2 p y ( 3 x 2 - y 2 ) z r 4 Y 4 , - 2 = i 1 2 ( Y 4 - 2 - Y 4 2 ) = 3 4 5 p x y ( 7 z 2 - r 2 ) r 4 Y 4 , - 1 = i 1 2 ( Y 4 - 1 + Y 4 1 ) = 3 4 5 2 p y ( 7 z 3 - 3 z r 2 ) r 4 Y 4 , 0 = Y 4 0 = 3 16 1 p 35 z 4 - 30 z 2 r 2 + 3 r 4 r 4 Y 4 , 1 = 1 2 ( Y 4 - 1 - Y 4 1 ) = 3 4 5 2 p x ( 7 z 3 - 3 z r 2 ) r 4 Y 4 , 2 = 1 2 ( Y 4 - 2 + Y 4 2 ) = 3 8 5 p ( x 2 - y 2 ) ( 7 z 2 - r 2 ) r 4 Y 4 , 3 = 1 2 ( Y 4 - 3 - Y 4 3 ) = 3 4 35 2 p x ( x 2 - 3 y 2 ) z r 4 Y 4 , 4 = 1 2 ( Y 4 - 4 + Y 4 4 ) = 3 16 35 p x 2 ( x 2 - 3 y 2 ) - y 2 ( 3 x 2 - y 2 ) r 4 {\displaystyle {\begin{aligned}Y_{4,-4}&=i{\sqrt {\frac {1}{2}}}\left(Y_{4}^{-4}-Y_{4}^{4}\right)={\frac {3}{4}}{\sqrt {\frac {35}{\pi }}}\cdot {\frac {xy\left(x^{2}-y^{2}\right)}{r^{4}}}\\Y_{4,-3}&=i{\sqrt {\frac {1}{2}}}\left(Y_{4}^{-3}+Y_{4}^{3}\right)={\frac {3}{4}}{\sqrt {\frac {35}{2\pi }}}\cdot {\frac {y(3x^{2}-y^{2})\cdot z}{r^{4}}}\\Y_{4,-2}&=i{\sqrt {\frac {1}{2}}}\left(Y_{4}^{-2}-Y_{4}^{2}\right)={\frac {3}{4}}{\sqrt {\frac {5}{\pi }}}\cdot {\frac {xy\cdot (7z^{2}-r^{2})}{r^{4}}}\\Y_{4,-1}&=i{\sqrt {\frac {1}{2}}}\left(Y_{4}^{-1}+Y_{4}^{1}\right)={\frac {3}{4}}{\sqrt {\frac {5}{2\pi }}}\cdot {\frac {y\cdot (7z^{3}-3zr^{2})}{r^{4}}}\\Y_{4,0}&=Y_{4}^{0}={\frac {3}{16}}{\sqrt {\frac {1}{\pi }}}\cdot {\frac {35z^{4}-30z^{2}r^{2}+3r^{4}}{r^{4}}}\\Y_{4,1}&={\sqrt {\frac {1}{2}}}\left(Y_{4}^{-1}-Y_{4}^{1}\right)={\frac {3}{4}}{\sqrt {\frac {5}{2\pi }}}\cdot {\frac {x\cdot (7z^{3}-3zr^{2})}{r^{4}}}\\Y_{4,2}&={\sqrt {\frac {1}{2}}}\left(Y_{4}^{-2}+Y_{4}^{2}\right)={\frac {3}{8}}{\sqrt {\frac {5}{\pi }}}\cdot {\frac {(x^{2}-y^{2})\cdot (7z^{2}-r^{2})}{r^{4}}}\\Y_{4,3}&={\sqrt {\frac {1}{2}}}\left(Y_{4}^{-3}-Y_{4}^{3}\right)={\frac {3}{4}}{\sqrt {\frac {35}{2\pi }}}\cdot {\frac {x(x^{2}-3y^{2})\cdot z}{r^{4}}}\\Y_{4,4}&={\sqrt {\frac {1}{2}}}\left(Y_{4}^{-4}+Y_{4}^{4}\right)={\frac {3}{16}}{\sqrt {\frac {35}{\pi }}}\cdot {\frac {x^{2}\left(x^{2}-3y^{2}\right)-y^{2}\left(3x^{2}-y^{2}\right)}{r^{4}}}\end{aligned}}}

Visualization of real spherical harmonics

[edit]

2D polar/azimuthal angle maps

[edit]

Below the real spherical harmonics are represented on 2D plots with the azimuthal angle, ph {\displaystyle \phi } , on the horizontal axis and the polar angle, th {\displaystyle \theta } , on the vertical axis. The saturation of the color at any point represents the magnitude of the spherical harmonic. Positive values are red and negative values are teal.

The nodal 'line of latitude' are visible as horizontal white lines. The nodal 'line of longitude' are visible as vertical white lines.

Visual Array of Real Spherical Harmonics Represented as 2D Theta/Phi Maps

Polar plots

[edit]

Below the real spherical harmonics are represented on polar plots. The magnitude of the spherical harmonic at particular polar and azimuthal angles is represented by the saturation of the color at that point and the phase is represented by the hue at that point.

Visual Array of Real Spherical Harmonics Represented with Polar Plot

Polar plots with magnitude as radius

[edit]

Below the real spherical harmonics are represented on polar plots. The magnitude of the spherical harmonic at particular polar and azimuthal angles is represented by the radius of the plot at that point and the phase is represented by the hue at that point.

Visual Array of Real Spherical Harmonics Represented with Polar Plot with Magnitude Mapped to Radius

Polar plots with amplitude as elevation

[edit]

Below the real spherical harmonics are represented on polar plots. The amplitude of the spherical harmonic (magnitude and sign) at a particular polar and azimuthal angle is represented by the elevation of the plot at that point above or below the surface of a uniform sphere. The magnitude is also represented by the saturation of the color at a given point. The phase is represented by the hue at a given point.

Visual Array of Real Spherical Harmonics Represented with Polar Plot with Amplitude Mapped to Elevation and Saturation

See also

[edit]
[edit]

References

[edit]

Cited references

[edit]
  1. ^ D. A. Varshalovich; A. N. Moskalev; V. K. Khersonskii (1988). Quantum theory of angular momentum : irreducible tensors, spherical harmonics, vector coupling coefficients, 3nj symbols (1. repr. ed.). Singapore: World Scientific Pub. pp. 155-156. ISBN 9971-50-107-4.
  2. ^ Petrucci (2016). General chemistry : principles and modern applications. Prentice Hall. ISBN 0133897311.
  3. ^ Friedman (1964). "The shapes of the f orbitals". J. Chem. Educ. 41 (7): 354.
  4. ^ C.D.H. Chisholm (1976). Group theoretical techniques in quantum chemistry. New York: Academic Press. ISBN 0-12-172950-8.
  5. ^ Blanco, Miguel A.; Florez, M.; Bermejo, M. (1 December 1997). "Evaluation of the rotation matrices in the basis of real spherical harmonics". Journal of Molecular Structure: THEOCHEM. 419 (1-3): 19-27. doi:10.1016/S0166-1280(97)00185-1.

General references

[edit]