Jump to content

List of common coordinate transformations

From Wikipedia, the free encyclopedia

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.
Find sources: "List of common coordinate transformations" - news * newspapers * books * scholar * JSTOR
(May 2010) (Learn how and when to remove this message)

This is a list of some of the most commonly used coordinate transformations.

2-dimensional

[edit]

Let ( x , y ) {\displaystyle (x,y)} be the standard Cartesian coordinates, and ( r , th ) {\displaystyle (r,\theta )} the standard polar coordinates.

To Cartesian coordinates

[edit]

From polar coordinates

[edit]

x = r cos th y = r sin th ( x , y ) ( r , th ) = [ cos th - r sin th sin th - r cos th ] Jacobian = det ( x , y ) ( r , th ) = r {\displaystyle {\begin{aligned}x&=r\cos \theta \\y&=r\sin \theta \\[5pt]{\frac {\partial (x,y)}{\partial (r,\theta )}}&={\begin{bmatrix}\cos \theta &-r\sin \theta \\\sin \theta &{\phantom {-}}r\cos \theta \end{bmatrix}}\\[5pt]{\text{Jacobian}}=\det {\frac {\partial (x,y)}{\partial (r,\theta )}}&=r\end{aligned}}}

From log-polar coordinates

[edit]
Main article: log-polar coordinates

x = e r cos th , y = e r sin th . {\displaystyle {\begin{aligned}x&=e^{\rho }\cos \theta ,\\y&=e^{\rho }\sin \theta .\end{aligned}}}

By using complex numbers ( x , y ) = x + i y ' {\displaystyle (x,y)=x+iy'} , the transformation can be written as x + i y = e r + i th {\displaystyle x+iy=e^{\rho +i\theta }}

That is, it is given by the complex exponential function.

From bipolar coordinates

[edit]
Main article: bipolar coordinates

x = a sinh t cosh t - cos s y = a sin s cosh t - cos s {\displaystyle {\begin{aligned}x&=a{\frac {\sinh \tau }{\cosh \tau -\cos \sigma }}\\y&=a{\frac {\sin \sigma }{\cosh \tau -\cos \sigma }}\end{aligned}}}

From 2-center bipolar coordinates

[edit]

x = 1 4 c ( r 1 2 - r 2 2 ) y = +- 1 4 c 16 c 2 r 1 2 - ( r 1 2 - r 2 2 + 4 c 2 ) 2 {\displaystyle {\begin{aligned}x&={\frac {1}{4c}}\left(r_{1}^{2}-r_{2}^{2}\right)\\[1ex]y&=\pm {\frac {1}{4c}}{\sqrt {16c^{2}r_{1}^{2}-\left(r_{1}^{2}-r_{2}^{2}+4c^{2}\right)^{2}}}\end{aligned}}}

From Cesaro equation

[edit]
Main article: Cesaro equation

x = cos [ k ( s ) d s ] d s y = sin [ k ( s ) d s ] d s {\displaystyle {\begin{aligned}x&=\int \cos \left[\int \kappa (s)\,ds\right]ds\\y&=\int \sin \left[\int \kappa (s)\,ds\right]ds\end{aligned}}}

To polar coordinates

[edit]

From Cartesian coordinates

[edit]

r = x 2 + y 2 th ' = arctan | y x | {\displaystyle {\begin{aligned}r&={\sqrt {x^{2}+y^{2}}}\\\theta '&=\arctan \left|{\frac {y}{x}}\right|\end{aligned}}} Note: solving for th ' {\displaystyle \theta '} returns the resultant angle in the first quadrant ( 0 < th < p 2 {\textstyle 0<\theta <{\frac {\pi }{2}}} ). To find th , {\displaystyle \theta ,} one must refer to the original Cartesian coordinate, determine the quadrant in which th {\displaystyle \theta } lies (for example, (3,-3) [Cartesian] lies in QIV), then use the following to solve for th : {\displaystyle \theta :}

th = { th ' for th ' in QI: 0 < th ' < p 2 p - th ' for th ' in QII: p 2 < th ' < p p + th ' for th ' in QIII: p < th ' < 3 p 2 2 p - th ' for th ' in QIV: 3 p 2 < th ' < 2 p {\displaystyle \theta ={\begin{cases}\theta '&{\text{for }}\theta '{\text{ in QI: }}&0<\theta '<{\frac {\pi }{2}}\\[1.2ex]\pi -\theta '&{\text{for }}\theta '{\text{ in QII: }}&{\frac {\pi }{2}}<\theta '<\pi \\[1.2ex]\pi +\theta '&{\text{for }}\theta '{\text{ in QIII: }}&\pi <\theta '<{\frac {3\pi }{2}}\\[1.2ex]2\pi -\theta '&{\text{for }}\theta '{\text{ in QIV: }}&{\frac {3\pi }{2}}<\theta '<2\pi \end{cases}}}

The value for th {\displaystyle \theta } must be solved for in this manner because for all values of th {\displaystyle \theta } , tan th {\displaystyle \tan \theta } is only defined for - p 2 < th < + p 2 {\textstyle -{\frac {\pi }{2}}<\theta <+{\frac {\pi }{2}}} , and is periodic (with period p {\displaystyle \pi } ). This means that the inverse function will only give values in the domain of the function, but restricted to a single period. Hence, the range of the inverse function is only half a full circle.

Note that one can also use r = x 2 + y 2 th ' = 2 arctan y x + r {\displaystyle {\begin{aligned}r&={\sqrt {x^{2}+y^{2}}}\\\theta '&=2\arctan {\frac {y}{x+r}}\end{aligned}}}

From 2-center bipolar coordinates

[edit]

r = r 1 2 + r 2 2 - 2 c 2 2 th = arctan [ 8 c 2 ( r 1 2 + r 2 2 - 2 c 2 ) r 1 2 - r 2 2 - 1 ] {\displaystyle {\begin{aligned}r&={\sqrt {\frac {r_{1}^{2}+r_{2}^{2}-2c^{2}}{2}}}\\\theta &=\arctan \left[{\sqrt {{\frac {8c^{2}(r_{1}^{2}+r_{2}^{2}-2c^{2})}{r_{1}^{2}-r_{2}^{2}}}-1}}\right]\end{aligned}}}

Where 2c is the distance between the poles.

To log-polar coordinates from Cartesian coordinates

[edit]

r = log x 2 + y 2 , th = arctan y x . {\displaystyle {\begin{aligned}\rho &=\log {\sqrt {x^{2}+y^{2}}},\\\theta &=\arctan {\frac {y}{x}}.\end{aligned}}}

Arc-length and curvature

[edit]

In Cartesian coordinates

[edit]

k = x ' y '' - y ' x '' ( x ' 2 + y ' 2 ) 3 2 s = a t x ' 2 + y ' 2 d t {\displaystyle {\begin{aligned}\kappa &={\frac {x'y''-y'x''}{\left({x'}^{2}+{y'}^{2}\right)^{\frac {3}{2}}}}\\s&=\int _{a}^{t}{\sqrt {{x'}^{2}+{y'}^{2}}}\,dt\end{aligned}}}

In polar coordinates

[edit]

k = r 2 + 2 r ' 2 - r r '' ( r 2 + r ' 2 ) 3 2 s = a ph r 2 + r ' 2 d ph {\displaystyle {\begin{aligned}\kappa &={\frac {r^{2}+2{r'}^{2}-rr''}{(r^{2}+{r'}^{2})^{\frac {3}{2}}}}\\s&=\int _{a}^{\varphi }{\sqrt {r^{2}+{r'}^{2}}}\,d\varphi \end{aligned}}}

3-dimensional

[edit]
For spherical coordinates, this article uses the convention that r {\displaystyle r} is radial distance, th {\displaystyle \theta } is the zenith angle, and ph {\displaystyle \phi } is the azimuthal angle.

Let (x, y, z) be the standard Cartesian coordinates, and (r, th, ph) the spherical coordinates, with th the angle measured away from the +Z axis (as illustrated). As ph has a range of 360deg the same considerations as in polar (2 dimensional) coordinates apply whenever an arctangent of it is taken. th has a range of 180deg, running from 0deg to 180deg, and does not pose any problem when calculated from an arccosine, but beware for an arctangent.

If, in the alternative definition, th is chosen to run from -90deg to +90deg, in opposite direction of the earlier definition, it can be found uniquely from an arcsine, but beware of an arccotangent. In this case in all formulas below all arguments in th should have sine and cosine exchanged, and as derivative also a plus and minus exchanged.

All divisions by zero result in special cases of being directions along one of the main axes and are in practice most easily solved by observation.

To Cartesian coordinates

[edit]

From spherical coordinates

[edit]
Main article: spherical coordinates

x = r sin th cos ph y = r sin th sin ph z = r cos th ( x , y , z ) ( r , th , ph ) = ( sin th cos ph r cos th cos ph - r sin th sin ph sin th sin ph r cos th sin ph r sin th cos ph cos th - r sin th 0 ) {\displaystyle {\begin{aligned}x&=\rho \,\sin \theta \cos \varphi \\y&=\rho \,\sin \theta \sin \varphi \\z&=\rho \,\cos \theta \\{\frac {\partial (x,y,z)}{\partial (\rho ,\theta ,\varphi )}}&={\begin{pmatrix}\sin \theta \cos \varphi &\rho \cos \theta \cos \varphi &-\rho \sin \theta \sin \varphi \\\sin \theta \sin \varphi &\rho \cos \theta \sin \varphi &\rho \sin \theta \cos \varphi \\\cos \theta &-\rho \sin \theta &0\end{pmatrix}}\end{aligned}}}

So for the volume element: d x d y d z = det ( x , y , z ) ( r , th , ph ) d r d th d ph = r 2 sin th d r d th d ph {\displaystyle dx\,dy\,dz=\det {\frac {\partial (x,y,z)}{\partial (\rho ,\theta ,\varphi )}}\,d\rho \,d\theta \,d\varphi =\rho ^{2}\sin \theta \,d\rho \,d\theta \,d\varphi }

From cylindrical coordinates

[edit]

x = r cos th y = r sin th z = z ( x , y , z ) ( r , th , z ) = ( cos th - r sin th 0 sin th r cos th 0 0 0 1 ) {\displaystyle {\begin{aligned}x&=r\,\cos \theta \\y&=r\,\sin \theta \\z&=z\,\\{\frac {\partial (x,y,z)}{\partial (r,\theta ,z)}}&={\begin{pmatrix}\cos \theta &-r\sin \theta &0\\\sin \theta &r\cos \theta &0\\0&0&1\end{pmatrix}}\end{aligned}}}

So for the volume element: d V = d x d y d z = det ( x , y , z ) ( r , th , z ) d r d th d z = r d r d th d z {\displaystyle dV=dx\,dy\,dz=\det {\frac {\partial (x,y,z)}{\partial (r,\theta ,z)}}\,dr\,d\theta \,dz=r\,dr\,d\theta \,dz}

To spherical coordinates

[edit]
Main article: spherical coordinates

From Cartesian coordinates

[edit]

r = x 2 + y 2 + z 2 th = arctan ( x 2 + y 2 z ) = arccos ( z x 2 + y 2 + z 2 ) ph = arctan ( y x ) = arccos ( x x 2 + y 2 ) = arcsin ( y x 2 + y 2 ) ( r , th , ph ) ( x , y , z ) = ( x r y r z r x z r 2 x 2 + y 2 y z r 2 x 2 + y 2 - x 2 + y 2 r 2 - y x 2 + y 2 x x 2 + y 2 0 ) {\displaystyle {\begin{aligned}\rho &={\sqrt {x^{2}+y^{2}+z^{2}}}\\\theta &=\arctan \left({\frac {\sqrt {x^{2}+y^{2}}}{z}}\right)=\arccos \left({\frac {z}{\sqrt {x^{2}+y^{2}+z^{2}}}}\right)\\\varphi &=\arctan \left({\frac {y}{x}}\right)=\arccos \left({\frac {x}{\sqrt {x^{2}+y^{2}}}}\right)=\arcsin \left({\frac {y}{\sqrt {x^{2}+y^{2}}}}\right)\\{\frac {\partial \left(\rho ,\theta ,\varphi \right)}{\partial \left(x,y,z\right)}}&={\begin{pmatrix}{\frac {x}{\rho }}&{\frac {y}{\rho }}&{\frac {z}{\rho }}\\{\frac {xz}{\rho ^{2}{\sqrt {x^{2}+y^{2}}}}}&{\frac {yz}{\rho ^{2}{\sqrt {x^{2}+y^{2}}}}}&-{\frac {\sqrt {x^{2}+y^{2}}}{\rho ^{2}}}\\{\frac {-y}{x^{2}+y^{2}}}&{\frac {x}{x^{2}+y^{2}}}&0\\\end{pmatrix}}\end{aligned}}}

See also the article on atan2 for how to elegantly handle some edge cases.

So for the element: d r d th d ph = det ( r , th , ph ) ( x , y , z ) d x d y d z = 1 x 2 + y 2 x 2 + y 2 + z 2 d x d y d z {\displaystyle d\rho \,d\theta \,d\varphi =\det {\frac {\partial (\rho ,\theta ,\varphi )}{\partial (x,y,z)}}\,dx\,dy\,dz={\frac {1}{{\sqrt {x^{2}+y^{2}}}{\sqrt {x^{2}+y^{2}+z^{2}}}}}\,dx\,dy\,dz}

From cylindrical coordinates

[edit]

r = r 2 + h 2 th = arctan r h ph = ph ( r , th , ph ) ( r , h , ph ) = ( r r 2 + h 2 h r 2 + h 2 0 h r 2 + h 2 - r r 2 + h 2 0 0 0 1 ) det ( r , th , ph ) ( r , h , ph ) = 1 r 2 + h 2 {\displaystyle {\begin{aligned}\rho &={\sqrt {r^{2}+h^{2}}}\\\theta &=\arctan {\frac {r}{h}}\\\varphi &=\varphi \\{\frac {\partial (\rho ,\theta ,\varphi )}{\partial (r,h,\varphi )}}&={\begin{pmatrix}{\frac {r}{\sqrt {r^{2}+h^{2}}}}&{\frac {h}{\sqrt {r^{2}+h^{2}}}}&0\\{\frac {h}{r^{2}+h^{2}}}&{\frac {-r}{r^{2}+h^{2}}}&0\\0&0&1\\\end{pmatrix}}\\\det {\frac {\partial (\rho ,\theta ,\varphi )}{\partial (r,h,\varphi )}}&={\frac {1}{\sqrt {r^{2}+h^{2}}}}\end{aligned}}}

To cylindrical coordinates

[edit]

From Cartesian coordinates

[edit]

r = x 2 + y 2 th = arctan ( y x ) z = z {\displaystyle {\begin{aligned}r&={\sqrt {x^{2}+y^{2}}}\\\theta &=\arctan {\left({\frac {y}{x}}\right)}\\z&=z\quad \end{aligned}}}

( r , th , h ) ( x , y , z ) = ( x x 2 + y 2 y x 2 + y 2 0 - y x 2 + y 2 x x 2 + y 2 0 0 0 1 ) {\displaystyle {\frac {\partial (r,\theta ,h)}{\partial (x,y,z)}}={\begin{pmatrix}{\frac {x}{\sqrt {x^{2}+y^{2}}}}&{\frac {y}{\sqrt {x^{2}+y^{2}}}}&0\\{\frac {-y}{x^{2}+y^{2}}}&{\frac {x}{x^{2}+y^{2}}}&0\\0&0&1\end{pmatrix}}}

From spherical coordinates

[edit]

r = r sin ph h = r cos ph th = th ( r , h , th ) ( r , ph , th ) = ( sin ph r cos ph 0 cos ph - r sin ph 0 0 0 1 ) det ( r , h , th ) ( r , ph , th ) = - r {\displaystyle {\begin{aligned}r&=\rho \sin \varphi \\h&=\rho \cos \varphi \\\theta &=\theta \\{\frac {\partial (r,h,\theta )}{\partial (\rho ,\varphi ,\theta )}}&={\begin{pmatrix}\sin \varphi &\rho \cos \varphi &0\\\cos \varphi &-\rho \sin \varphi &0\\0&0&1\\\end{pmatrix}}\\\det {\frac {\partial (r,h,\theta )}{\partial (\rho ,\varphi ,\theta )}}&=-\rho \end{aligned}}}

Arc-length, curvature and torsion from Cartesian coordinates

[edit]

s = 0 t x ' 2 + y ' 2 + z ' 2 d t k = ( z '' y ' - y '' z ' ) 2 + ( x '' z ' - z '' x ' ) 2 + ( y '' x ' - x '' y ' ) 2 ( x ' 2 + y ' 2 + z ' 2 ) 3 2 t = x ''' ( y ' z '' - y '' z ' ) + y ''' ( x '' z ' - x ' z '' ) + z ''' ( x ' y '' - x '' y ' ) ( x ' y '' - x '' y ' ) 2 + ( x '' z ' - x ' z '' ) 2 + ( y ' z '' - y '' z ' ) 2 {\displaystyle {\begin{aligned}s&=\int _{0}^{t}{\sqrt {{x'}^{2}+{y'}^{2}+{z'}^{2}}}\,dt\\[3pt]\kappa &={\frac {\sqrt {\left(z''y'-y''z'\right)^{2}+\left(x''z'-z''x'\right)^{2}+\ left(y''x'-x''y'\right)^{2}}}{\left({x'}^{2}+{y'}^{2}+{z'}^{ 2}\right)^{\frac {3}{2}}}}\\[3pt]\tau &={\frac {x'''\left(y'z''-y''z'\right)+y'''\left(x''z'-x'z''\right)+z'''\left(x'y''-x''y'\right)}{{\left(x'y''-x''y'\right)}^{2}+{\left(x''z'-x'z''\right)}^{2}+{\left(y'z''-y''z'\right)}^{2}}}\end{aligned}}}

See also

[edit]

References

[edit]