Jump to content

Free entropy

From Wikipedia, the free encyclopedia
Thermodynamic potential of entropy, analogous to the free energy
Thermodynamics
The classical Carnot heat engine
Specific heat capacity c = {\displaystyle c=}
T {\displaystyle T} S {\displaystyle \partial S}
N {\displaystyle N} T {\displaystyle \partial T}
Compressibility b = - {\displaystyle \beta =-}
1 {\displaystyle 1} V {\displaystyle \partial V}
V {\displaystyle V} p {\displaystyle \partial p}
Thermal expansion a = {\displaystyle \alpha =}
1 {\displaystyle 1} V {\displaystyle \partial V}
V {\displaystyle V} T {\displaystyle \partial T}

A thermodynamic free entropy is an entropic thermodynamic potential analogous to the free energy. Also known as a Massieu, Planck, or Massieu-Planck potentials (or functions), or (rarely) free information. In statistical mechanics, free entropies frequently appear as the logarithm of a partition function. The Onsager reciprocal relations in particular, are developed in terms of entropic potentials. In mathematics, free entropy means something quite different: it is a generalization of entropy defined in the subject of free probability.

A free entropy is generated by a Legendre transformation of the entropy. The different potentials correspond to different constraints to which the system may be subjected.

Examples

[edit]

The most common examples are:

Name Function Alt. function Natural variables
Entropy d S = 1 T d U + P T d V - i = 1 s m i T d N i {\displaystyle dS={\frac {1}{T}}dU+{\frac {P}{T}}dV-\sum _{i=1}^{s}{\frac {\mu _{i}}{T}}dN_{i}\,} U , V , { N i } {\displaystyle ~~~~~U,V,\{N_{i}\}\,}
Massieu potential \ Helmholtz free entropy Ph = S - 1 T U {\displaystyle \Phi =S-{\frac {1}{T}}U} = - A T {\displaystyle =-{\frac {A}{T}}} 1 T , V , { N i } {\displaystyle ~~~~~{\frac {1}{T}},V,\{N_{i}\}\,}
Planck potential \ Gibbs free entropy Ks = Ph - P T V {\displaystyle \Xi =\Phi -{\frac {P}{T}}V} = - G T {\displaystyle =-{\frac {G}{T}}} 1 T , P T , { N i } {\displaystyle ~~~~~{\frac {1}{T}},{\frac {P}{T}},\{N_{i}\}\,}

where

S {\displaystyle S} is entropy
Ph {\displaystyle \Phi } is the Massieu potential[1][2]
Ks {\displaystyle \Xi } is the Planck potential[1]
U {\displaystyle U} is internal energy
T {\displaystyle T} is temperature
P {\displaystyle P} is pressure
V {\displaystyle V} is volume
A {\displaystyle A} is Helmholtz free energy
G {\displaystyle G} is Gibbs free energy
N i {\displaystyle N_{i}} is number of particles (or number of moles) composing the i-th chemical component
m i {\displaystyle \mu _{i}} is the chemical potential of the i-th chemical component
s {\displaystyle s} is the total number of components
i {\displaystyle i} is the i {\displaystyle i} th components.

Note that the use of the terms "Massieu" and "Planck" for explicit Massieu-Planck potentials are somewhat obscure and ambiguous. In particular "Planck potential" has alternative meanings. The most standard notation for an entropic potential is ps {\displaystyle \psi } , used by both Planck and Schrodinger. (Note that Gibbs used ps {\displaystyle \psi } to denote the free energy.) Free entropies were invented by French engineer Francois Massieu in 1869, and actually predate Gibbs's free energy (1875).

Dependence of the potentials on the natural variables

[edit]

Entropy

[edit]
S = S ( U , V , { N i } ) {\displaystyle S=S(U,V,\{N_{i}\})}

By the definition of a total differential,

d S = S U d U + S V d V + i = 1 s S N i d N i . {\displaystyle dS={\frac {\partial S}{\partial U}}dU+{\frac {\partial S}{\partial V}}dV+\sum _{i=1}^{s}{\frac {\partial S}{\partial N_{i}}}dN_{i}.}

From the equations of state,

d S = 1 T d U + P T d V + i = 1 s ( - m i T ) d N i . {\displaystyle dS={\frac {1}{T}}dU+{\frac {P}{T}}dV+\sum _{i=1}^{s}\left(-{\frac {\mu _{i}}{T}}\right)dN_{i}.}

The differentials in the above equation are all of extensive variables, so they may be integrated to yield

S = U T + P V T + i = 1 s ( - m i N T ) + constant . {\displaystyle S={\frac {U}{T}}+{\frac {PV}{T}}+\sum _{i=1}^{s}\left(-{\frac {\mu _{i}N}{T}}\right)+{\textrm {constant}}.}

Massieu potential / Helmholtz free entropy

[edit]
Ph = S - U T {\displaystyle \Phi =S-{\frac {U}{T}}}
Ph = U T + P V T + i = 1 s ( - m i N T ) - U T {\displaystyle \Phi ={\frac {U}{T}}+{\frac {PV}{T}}+\sum _{i=1}^{s}\left(-{\frac {\mu _{i}N}{T}}\right)-{\frac {U}{T}}}
Ph = P V T + i = 1 s ( - m i N T ) {\displaystyle \Phi ={\frac {PV}{T}}+\sum _{i=1}^{s}\left(-{\frac {\mu _{i}N}{T}}\right)}

Starting over at the definition of Ph {\displaystyle \Phi } and taking the total differential, we have via a Legendre transform (and the chain rule)

d Ph = d S - 1 T d U - U d 1 T , {\displaystyle d\Phi =dS-{\frac {1}{T}}dU-Ud{\frac {1}{T}},}
d Ph = 1 T d U + P T d V + i = 1 s ( - m i T ) d N i - 1 T d U - U d 1 T , {\displaystyle d\Phi ={\frac {1}{T}}dU+{\frac {P}{T}}dV+\sum _{i=1}^{s}\left(-{\frac {\mu _{i}}{T}}\right)dN_{i}-{\frac {1}{T}}dU-Ud{\frac {1}{T}},}
d Ph = - U d 1 T + P T d V + i = 1 s ( - m i T ) d N i . {\displaystyle d\Phi =-Ud{\frac {1}{T}}+{\frac {P}{T}}dV+\sum _{i=1}^{s}\left(-{\frac {\mu _{i}}{T}}\right)dN_{i}.}

The above differentials are not all of extensive variables, so the equation may not be directly integrated. From d Ph {\displaystyle d\Phi } we see that

Ph = Ph ( 1 T , V , { N i } ) . {\displaystyle \Phi =\Phi ({\frac {1}{T}},V,\{N_{i}\}).}

If reciprocal variables are not desired,[3]: 222

d Ph = d S - T d U - U d T T 2 , {\displaystyle d\Phi =dS-{\frac {TdU-UdT}{T^{2}}},}
d Ph = d S - 1 T d U + U T 2 d T , {\displaystyle d\Phi =dS-{\frac {1}{T}}dU+{\frac {U}{T^{2}}}dT,}
d Ph = 1 T d U + P T d V + i = 1 s ( - m i T ) d N i - 1 T d U + U T 2 d T , {\displaystyle d\Phi ={\frac {1}{T}}dU+{\frac {P}{T}}dV+\sum _{i=1}^{s}\left(-{\frac {\mu _{i}}{T}}\right)dN_{i}-{\frac {1}{T}}dU+{\frac {U}{T^{2}}}dT,}
d Ph = U T 2 d T + P T d V + i = 1 s ( - m i T ) d N i , {\displaystyle d\Phi ={\frac {U}{T^{2}}}dT+{\frac {P}{T}}dV+\sum _{i=1}^{s}\left(-{\frac {\mu _{i}}{T}}\right)dN_{i},}
Ph = Ph ( T , V , { N i } ) . {\displaystyle \Phi =\Phi (T,V,\{N_{i}\}).}

Planck potential / Gibbs free entropy

[edit]
Ks = Ph - P V T {\displaystyle \Xi =\Phi -{\frac {PV}{T}}}
Ks = P V T + i = 1 s ( - m i N T ) - P V T {\displaystyle \Xi ={\frac {PV}{T}}+\sum _{i=1}^{s}\left(-{\frac {\mu _{i}N}{T}}\right)-{\frac {PV}{T}}}
Ks = i = 1 s ( - m i N T ) {\displaystyle \Xi =\sum _{i=1}^{s}\left(-{\frac {\mu _{i}N}{T}}\right)}

Starting over at the definition of Ks {\displaystyle \Xi } and taking the total differential, we have via a Legendre transform (and the chain rule)

d Ks = d Ph - P T d V - V d P T {\displaystyle d\Xi =d\Phi -{\frac {P}{T}}dV-Vd{\frac {P}{T}}}
d Ks = - U d 2 T + P T d V + i = 1 s ( - m i T ) d N i - P T d V - V d P T {\displaystyle d\Xi =-Ud{\frac {2}{T}}+{\frac {P}{T}}dV+\sum _{i=1}^{s}\left(-{\frac {\mu _{i}}{T}}\right)dN_{i}-{\frac {P}{T}}dV-Vd{\frac {P}{T}}}
d Ks = - U d 1 T - V d P T + i = 1 s ( - m i T ) d N i . {\displaystyle d\Xi =-Ud{\frac {1}{T}}-Vd{\frac {P}{T}}+\sum _{i=1}^{s}\left(-{\frac {\mu _{i}}{T}}\right)dN_{i}.}

The above differentials are not all of extensive variables, so the equation may not be directly integrated. From d Ks {\displaystyle d\Xi } we see that

Ks = Ks ( 1 T , P T , { N i } ) . {\displaystyle \Xi =\Xi \left({\frac {1}{T}},{\frac {P}{T}},\{N_{i}\}\right).}

If reciprocal variables are not desired,[3]: 222

d Ks = d Ph - T ( P d V + V d P ) - P V d T T 2 , {\displaystyle d\Xi =d\Phi -{\frac {T(PdV+VdP)-PVdT}{T^{2}}},}
d Ks = d Ph - P T d V - V T d P + P V T 2 d T , {\displaystyle d\Xi =d\Phi -{\frac {P}{T}}dV-{\frac {V}{T}}dP+{\frac {PV}{T^{2}}}dT,}
d Ks = U T 2 d T + P T d V + i = 1 s ( - m i T ) d N i - P T d V - V T d P + P V T 2 d T , {\displaystyle d\Xi ={\frac {U}{T^{2}}}dT+{\frac {P}{T}}dV+\sum _{i=1}^{s}\left(-{\frac {\mu _{i}}{T}}\right)dN_{i}-{\frac {P}{T}}dV-{\frac {V}{T}}dP+{\frac {PV}{T^{2}}}dT,}
d Ks = U + P V T 2 d T - V T d P + i = 1 s ( - m i T ) d N i , {\displaystyle d\Xi ={\frac {U+PV}{T^{2}}}dT-{\frac {V}{T}}dP+\sum _{i=1}^{s}\left(-{\frac {\mu _{i}}{T}}\right)dN_{i},}
Ks = Ks ( T , P , { N i } ) . {\displaystyle \Xi =\Xi (T,P,\{N_{i}\}).}

References

[edit]
  1. ^ a b Antoni Planes; Eduard Vives (2000-10-24). "Entropic variables and Massieu-Planck functions". Entropic Formulation of Statistical Mechanics. Universitat de Barcelona. Archived from the original on 2008-10-11. Retrieved 2007-09-18.
  2. ^ T. Wada; A.M. Scarfone (December 2004). "Connections between Tsallis' formalisms employing the standard linear average energy and ones employing the normalized q-average energy". Physics Letters A. 335 (5-6): 351-362. arXiv:cond-mat/0410527. Bibcode:2005PhLA..335..351W. doi:10.1016/j.physleta.2004.12.054. S2CID 17101164.
  3. ^ a b The Collected Papers of Peter J. W. Debye. New York, New York: Interscience Publishers, Inc. 1954.

Bibliography

[edit]
  • Massieu, M.F. (1869). "Compt. Rend". 69 (858): 1057. {{cite journal}}: Cite journal requires |journal= (help)