Jump to content

Bispherical coordinates

From Wikipedia, the free encyclopedia
Three-dimensional orthogonal coordinate system
Illustration of bispherical coordinates, which are obtained by rotating a two-dimensional bipolar coordinate system about the axis joining its two foci. The foci are located at distance 1 from the vertical z-axis. The red self-intersecting torus is the s=45deg isosurface, the blue sphere is the t=0.5 isosurface, and the yellow half-plane is the ph=60deg isosurface. The green half-plane marks the x-z plane, from which ph is measured. The black point is located at the intersection of the red, blue and yellow isosurfaces, at Cartesian coordinates roughly (0.841, -1.456, 1.239).

Bispherical coordinates are a three-dimensional orthogonal coordinate system that results from rotating the two-dimensional bipolar coordinate system about the axis that connects the two foci. Thus, the two foci F 1 {\displaystyle F_{1}} and F 2 {\displaystyle F_{2}} in bipolar coordinates remain points (on the z {\displaystyle z} -axis, the axis of rotation) in the bispherical coordinate system.

Definition

[edit]

The most common definition of bispherical coordinates ( t , s , ph ) {\displaystyle (\tau ,\sigma ,\phi )} is

x = a sin s cosh t - cos s cos ph , y = a sin s cosh t - cos s sin ph , z = a sinh t cosh t - cos s , {\displaystyle {\begin{aligned}x&=a\ {\frac {\sin \sigma }{\cosh \tau -\cos \sigma }}\cos \phi ,\\y&=a\ {\frac {\sin \sigma }{\cosh \tau -\cos \sigma }}\sin \phi ,\\z&=a\ {\frac {\sinh \tau }{\cosh \tau -\cos \sigma }},\end{aligned}}}

where the s {\displaystyle \sigma } coordinate of a point P {\displaystyle P} equals the angle F 1 P F 2 {\displaystyle F_{1}PF_{2}} and the t {\displaystyle \tau } coordinate equals the natural logarithm of the ratio of the distances d 1 {\displaystyle d_{1}} and d 2 {\displaystyle d_{2}} to the foci

t = ln d 1 d 2 {\displaystyle \tau =\ln {\frac {d_{1}}{d_{2}}}}

The coordinates ranges are - < t {\displaystyle \tau } < , 0 <= s {\displaystyle \sigma } <= p {\displaystyle \pi } and 0 <= ph {\displaystyle \phi } <= 2 p {\displaystyle \pi } .

Coordinate surfaces

[edit]

Surfaces of constant s {\displaystyle \sigma } correspond to intersecting tori of different radii

z 2 + ( x 2 + y 2 - a cot s ) 2 = a 2 sin 2 s {\displaystyle z^{2}+\left({\sqrt {x^{2}+y^{2}}}-a\cot \sigma \right)^{2}={\frac {a^{2}}{\sin ^{2}\sigma }}}

that all pass through the foci but are not concentric. The surfaces of constant t {\displaystyle \tau } are non-intersecting spheres of different radii

( x 2 + y 2 ) + ( z - a coth t ) 2 = a 2 sinh 2 t {\displaystyle \left(x^{2}+y^{2}\right)+\left(z-a\coth \tau \right)^{2}={\frac {a^{2}}{\sinh ^{2}\tau }}}

that surround the foci. The centers of the constant- t {\displaystyle \tau } spheres lie along the z {\displaystyle z} -axis, whereas the constant- s {\displaystyle \sigma } tori are centered in the x y {\displaystyle xy} plane.

Inverse formulae

[edit]

The formulae for the inverse transformation are:

s = arccos ( R 2 - a 2 Q ) , t = arsinh ( 2 a z Q ) , ph = arctan ( y x ) , {\displaystyle {\begin{aligned}\sigma &=\arccos \left({\dfrac {R^{2}-a^{2}}{Q}}\right),\\\tau &=\operatorname {arsinh} \left({\dfrac {2az}{Q}}\right),\\\phi &=\arctan \left({\dfrac {y}{x}}\right),\end{aligned}}}

where R = x 2 + y 2 + z 2 {\textstyle R={\sqrt {x^{2}+y^{2}+z^{2}}}} and Q = ( R 2 + a 2 ) 2 - ( 2 a z ) 2 . {\textstyle Q={\sqrt {\left(R^{2}+a^{2}\right)^{2}-\left(2az\right)^{2}}}.}

Scale factors

[edit]

The scale factors for the bispherical coordinates s {\displaystyle \sigma } and t {\displaystyle \tau } are equal

h s = h t = a cosh t - cos s {\displaystyle h_{\sigma }=h_{\tau }={\frac {a}{\cosh \tau -\cos \sigma }}}

whereas the azimuthal scale factor equals

h ph = a sin s cosh t - cos s {\displaystyle h_{\phi }={\frac {a\sin \sigma }{\cosh \tau -\cos \sigma }}}

Thus, the infinitesimal volume element equals

d V = a 3 sin s ( cosh t - cos s ) 3 d s d t d ph {\displaystyle dV={\frac {a^{3}\sin \sigma }{\left(\cosh \tau -\cos \sigma \right)^{3}}}\,d\sigma \,d\tau \,d\phi }

and the Laplacian is given by

2 Ph = ( cosh t - cos s ) 3 a 2 sin s [ s ( sin s cosh t - cos s Ph s ) + sin s t ( 1 cosh t - cos s Ph t ) + 1 sin s ( cosh t - cos s ) 2 Ph ph 2 ] {\displaystyle {\begin{aligned}\nabla ^{2}\Phi ={\frac {\left(\cosh \tau -\cos \sigma \right)^{3}}{a^{2}\sin \sigma }}&\left[{\frac {\partial }{\partial \sigma }}\left({\frac {\sin \sigma }{\cosh \tau -\cos \sigma }}{\frac {\partial \Phi }{\partial \sigma }}\right)\right.\\[8pt]&{}\quad +\left.\sin \sigma {\frac {\partial }{\partial \tau }}\left({\frac {1}{\cosh \tau -\cos \sigma }}{\frac {\partial \Phi }{\partial \tau }}\right)+{\frac {1}{\sin \sigma \left(\cosh \tau -\cos \sigma \right)}}{\frac {\partial ^{2}\Phi }{\partial \phi ^{2}}}\right]\end{aligned}}}

Other differential operators such as F {\displaystyle \nabla \cdot \mathbf {F} } and x F {\displaystyle \nabla \times \mathbf {F} } can be expressed in the coordinates ( s , t ) {\displaystyle (\sigma ,\tau )} by substituting the scale factors into the general formulae found in orthogonal coordinates.

Applications

[edit]

The classic applications of bispherical coordinates are in solving partial differential equations, e.g., Laplace's equation, for which bispherical coordinates allow a separation of variables. However, the Helmholtz equation is not separable in bispherical coordinates. A typical example would be the electric field surrounding two conducting spheres of different radii.

References

[edit]

Bibliography

[edit]
  • Morse PM, Feshbach H (1953). Methods of Theoretical Physics, Parts I and II. New York: McGraw-Hill. pp. 665-666, 1298-1301.
  • Korn GA, Korn TM (1961). Mathematical Handbook for Scientists and Engineers. New York: McGraw-Hill. p. 182. LCCN 59014456.
  • Zwillinger D (1992). Handbook of Integration. Boston, MA: Jones and Bartlett. p. 113. ISBN 0-86720-293-9.
  • Moon PH, Spencer DE (1988). "Bispherical Coordinates (e, th, ps)". Field Theory Handbook, Including Coordinate Systems, Differential Equations, and Their Solutions (corrected 2nd ed., 3rd print ed.). New York: Springer Verlag. pp. 110-112 (Section IV, E4Rx). ISBN 0-387-02732-7.
[edit]